示例#1
0
def main(text, checkpoint_path):
    q_vocabutil = VocabUtil("./data/xhj_q.vocab")
    a_vocabutil =  VocabUtil("./data/xhj_a.vocab")

    tf.reset_default_graph()

    # 定义训练用的循环神经网络模型。
    with tf.variable_scope("nmt_model", reuse=None):
        model = NMTModel()

    print(datetime.now(), text)

    # 根据词汇表,将测试句子转为ids。
    text_ids = q_vocabutil.get_ids_word(text)
    print(datetime.now(), text_ids)

    # 建立解码所需的计算图。
    output_op = model.inference(text_ids)
    sess = tf.Session()
    saver = tf.train.Saver()
    saver.restore(sess, checkpoint_path)

    # 读取翻译结果。
    output_ids = sess.run(output_op)
    print(datetime.now(), output_ids)

    output_text = a_vocabutil.get_text(output_ids)

    # 输出翻译结果。
    print(datetime.now(), output_text)
    sess.close()
示例#2
0
def main(test_text, checkpoint_path):
    tf.reset_default_graph()

    # 定义训练用的循环神经网络模型。
    with tf.variable_scope("nmt_model", reuse=None):
        model = NMTModel()

        # 定义个测试句子。
    #     test_en_text = "This is a test . <eos>"
    #     print(test_en_text)

    vocabutil = VocabUtil("./data/xhj.vocab")

    # 根据英文词汇表,将测试句子转为单词ID。
    test_ids = vocabutil.get_ids_word(test_text)
    print(test_ids)

    # 建立解码所需的计算图。
    output_op = model.inference(test_ids)
    sess = tf.Session()
    saver = tf.train.Saver()
    saver.restore(sess, checkpoint_path)

    # 读取翻译结果。
    output_ids = sess.run(output_op)
    print(output_ids)

    # 根据中文词汇表,将翻译结果转换为中文文字。
    answer = vocabutil.get_text(output_ids)

    # 输出翻译结果。
    print(datetime.now(), answer.encode('utf8').decode(sys.stdout.encoding))
    sess.close()
示例#3
0
class TestModel():
    def __init__(self, vocabfile, checkpoint_path):
        self.vocabutil = VocabUtil(vocabfile)

        tf.reset_default_graph()

        # 定义训练用的循环神经网络模型。
        with tf.variable_scope("nmt_model", reuse=tf.AUTO_REUSE):
            self.model = NMTModel()

        # 建立解码所需的计算图。
        text_ids = self.vocabutil.get_ids_word("你是谁")
        output_op = self.model.inference(text_ids)

        # self.saver = tf.train.import_meta_graph(checkpoint_path+".meta")
        self.sess = tf.Session()
        self.saver = tf.train.Saver()
        self.saver.restore(self.sess, checkpoint_path)


        # self.sess.run(tf.global_variables_initializer())

        answer = self.vocabutil.get_text(self.sess.run(output_op))
        print(answer)

        # print(self.predict("你是谁"))

    def close(self):
        self.sess.close()

    def predict(self, q):
        # tf.reset_default_graph()
        text_ids = self.vocabutil.get_ids_word(q)
        output_op = self.model.inference(text_ids)
        self.sess.run(output_op)
        answer = self.vocabutil.get_text(output_op)
        return answer
示例#4
0
def talk_word(checkpoint_path):
    vocabutil = VocabUtil("./data/xhj.vocab")
    try:
        while True:
            q = _prompt_input()
            if q.lower() == 'exit':
                break
            ids = vocabutil.get_ids_word(q)
            answer = get_answer(ids, checkpoint_path)
            answer = vocabutil.get_text(answer)
            print(answer)
    except Exception:
        traceback.print_exc()
    except KeyboardInterrupt:
        print("Ctrl+c exit.")
示例#5
0
def talk_word(checkpoint_path):
    vocabutil = VocabUtil("./data/xhj.vocab")
    #time consumption: 00.002783
    try:
        while True:
            q = _prompt_input()
            if q.lower() == 'exit':
                break
            ids = vocabutil.get_ids_word(q)
            #time_consumption:00.000027

            answer = get_answer(ids, checkpoint_path)
            #time_consumption:03.158722

            answer = vocabutil.get_text(answer)
            #modi_answser 0:00:00.000066

            print(answer)

    except Exception:
        traceback.print_exc()
    except KeyboardInterrupt:
        print("Ctrl+c exit.")