示例#1
0
def view():
      
    _mcube = xBinnedModulationCube(MCUBE_FILE_PATH)
    _mcube.fit()
    _fit_results = _mcube.fit_results[0]
    plt.figure('Polarization degree')
    _mcube.plot_polarization_degree(show=False, color='blue')
    pol_degree_spline.plot(color='lightgray',label='Spin %s'%spindegree, show=False)
    plt.figtext(0.2, 0.85,'XIPE %s ks'%(SIM_DURATION/1000.),size=18)
    #plt.errorbar(_energy_mean, _pol_deg, yerr=_pol_deg_err, color='blue',marker='o')
    
    plt.legend()

    plt.figure('Polarization angle')
    _mcube.plot_polarization_angle(show=False, color='blue', degree=False)
    pol_angle_spline.plot(color='lightgray',label='Spin %s'%spindegree, show=False)
    plt.figtext(0.2, 0.85,'XIPE %s ks'%(SIM_DURATION/1000.),size=18)
    #plt.errorbar(_energy_mean,_pol_angle, yerr= _pol_angle_err,color='blue',marker='o')
    plt.xlim([1,10])
    plt.legend()
    plt.figure('MDP %s'%base_name)
    mdp = _mcube.mdp99[:-1]
    emean = _mcube.emean[:-1]
    emin =  _mcube.emin[:-1]
    emax =  _mcube.emax[:-1]
    width = (emax-emin)/2.
    plt.errorbar(emean,mdp,xerr=width, label='MDP99',marker='o',linestyle='--')
    plt.figtext(0.2, 0.85,'XIPE %s ks'%(SIM_DURATION/1000.),size=18)
    plt.xlim([1,10])
    plt.ylabel('MPD 99\%')
    plt.xlabel('Energy (keV)')
    #plt.legend()
    plt.show()
def plotmdp():
    spin00_pol_degree_spline = buildspline(0.5)
    spin00_mcube =  xBinnedModulationCube(fetch_mcubepath(0.5))

    spin998_pol_degree_spline = buildspline(0.998)
    spin998_mcube =  xBinnedModulationCube(fetch_mcubepath(0.998))

    spin00_mcube.fit()
    spin998_mcube.fit()
    
    spin00_fit_results = spin00_mcube.fit_results[0]
    spin998_fit_results = spin998_mcube.fit_results[0]

    
    plt.figure('MDP')
    
    spin00_mdp = spin00_mcube.mdp99[:-1]
    spin998_mdp = spin998_mcube.mdp99[:-1]
    emean = spin00_mcube.emean[:-1]
    emin =  spin00_mcube.emin[:-1]
    emax =  spin00_mcube.emax[:-1]
    width = (emax-emin)/2.
    plt.errorbar(emean,spin00_mdp,xerr=width, label='Spin 0.5',marker='o',linestyle='--')
    
    plt.errorbar(emean,spin998_mdp,xerr=width, label='Spin 0.998',marker='o',linestyle='--')
            
    plt.figtext(0.2, 0.85,'XIPE %s ks'%((SIM_DURATION*NUM_RUNS)/1000.),size=18)
    plt.xlim([1,10])
    
    plt.ylabel('MPD 99\%')
    plt.xlabel('Energy (keV)')
    plt.legend()
    plt.show()
示例#3
0
 def plot_polarization_angle(self, show=True, degree=False, **kwargs):
     """Plot the polarization angle as a function of energy.
     """
     if self.fit_results == []:
         self.fit()
     _x = self.emean
     _dx = [self.emean - self.emin, self.emax - self.emean]
     if degree:
         _y = [numpy.degrees(r.phase) for r in self.fit_results]
         _dy = [numpy.degrees(r.phase_error) for r in self.fit_results]
     else:
         _y = [(r.phase) for r in self.fit_results]
         _dy = [(r.phase_error) for r in self.fit_results]
     # If there's more than one energy binning we also fit the entire
     # energy interval, but we don't want the corresponding data point to
     # appear in the plot, se we brutally get rid of it.
     if len(self.fit_results) > 1:
         _x = _x[:-1]
         _dx = [_x - self.emin[:-1], self.emax[:-1] - _x]
         _y = _y[:-1]
         _dy = _dy[:-1]
     plt.errorbar(_x, _y, _dy, _dx, fmt='o', **kwargs)
     plt.xlabel('Energy [keV]')
     if degree:
         plt.ylabel('Polarization angle [$^\circ$]')
     else:
         plt.ylabel('Polarization angle [rad]')
     if show:
         plt.show()
示例#4
0
文件: binning.py 项目: pabell/ximpol
 def plot(self, show=True):
     """Overloaded plot method.
     """
     fig = plt.figure('Phasogram')
     plt.errorbar(self.phase, self.counts, yerr=self.error, fmt='o')
     plt.xlabel('Phase')
     plt.ylabel('Counts/bin')
     if show:
         plt.show()
示例#5
0
文件: binning.py 项目: pabell/ximpol
 def plot(self, show=True):
     """Overloaded plot method.
     """
     fig = plt.figure('Phasogram')
     plt.errorbar(self.phase, self.counts, yerr=self.error, fmt='o')
     plt.xlabel('Phase')
     plt.ylabel('Counts/bin')
     if show:
         plt.show()
示例#6
0
def plot(save_plots=False):
    """
    """
    sim_label = 'XIPE %s ks' % (SIM_DURATION/1000.)
    mod_label = 'Input model'
    _phase, _phase_err, _pol_deg, _pol_deg_err, _pol_angle,\
        _pol_angle_err = numpy.loadtxt(ANALYSIS_FILE_PATH, unpack=True)
    _colors = ['blue']*len(_pol_deg)
    plt.figure('Polarization degree')
    _good_fit = _pol_deg > 2*_pol_deg_err
    _bad_fit = numpy.logical_not(_good_fit)
    plt.errorbar(_phase[_good_fit], _pol_deg[_good_fit],
                 xerr=_phase_err[_good_fit], yerr=_pol_deg_err[_good_fit],
                 fmt='o', label=sim_label, color='blue')
    plt.errorbar(_phase[_bad_fit], _pol_deg[_bad_fit],
                 xerr=_phase_err[_bad_fit], yerr=_pol_deg_err[_bad_fit],
                 fmt='o', color='gray')
    pol_degree_spline.plot(show=False, label=mod_label, color='green')
    plt.axis([0., 1., 0., 0.1])
    plt.legend(bbox_to_anchor=(0.37, 0.95))
    plt.figtext(0.6, 0.8, '%.2f--%.2f keV' %\
                (E_BINNING[0], E_BINNING[-1]), size=16)
    if save_plots:
        plt.savefig('gk_per_polarization_degree.png')
    plt.figure('Polarization angle')
    plt.errorbar(_phase[_good_fit], _pol_angle[_good_fit],
                 xerr=_phase_err[_good_fit], yerr=_pol_angle_err[_good_fit],
                 fmt='o', label=sim_label, color='blue')
    plt.errorbar(_phase[_bad_fit], _pol_angle[_bad_fit],
                 xerr=_phase_err[_bad_fit], yerr=_pol_angle_err[_bad_fit],
                 fmt='o', color='gray')
    pol_angle_spline.plot(show=False, label=mod_label, color='green',
                          scale=numpy.radians(1.))
    plt.axis([0., 1., -0.1, 1.5])
    plt.xlabel('Rotational phase')
    plt.ylabel('Polarization angle [rad]')
    plt.legend(bbox_to_anchor=(0.37, 0.95))
    plt.figtext(0.6, 0.8, '%.2f--%.2f keV' %\
                (E_BINNING[0], E_BINNING[-1]), size=16)
    if save_plots:
        plt.savefig('gk_per_polarization_angle.png')
    _ebinning = zip(E_BINNING[:-1], E_BINNING[1:])
    if len(_ebinning) > 1:
        _ebinning.append((E_BINNING[0], E_BINNING[-1]))
    for i, (_emin, _emax) in enumerate(_ebinning):
        plt.figure('Phasogram %d' % i)
        phasogram = xBinnedPhasogram(_phasg_file_path(i))
        _scale = phasogram.counts.sum()/phasogram_spline.norm()/\
                 len(phasogram.counts)
        phasogram_spline.plot(show=False, label=mod_label, scale=_scale,
                              color='green')
        phasogram.plot(show=False, color='blue', label=sim_label )
        plt.legend(bbox_to_anchor=(0.37, 0.95))
        plt.figtext(0.65, 0.8, '%.2f--%.2f keV' % (_emin, _emax), size=16)
        if save_plots:
            plt.savefig('gk_per_phasogram_%d.png' % i)
    plt.show()
示例#7
0
 def plot(self, show=True):
     """Overloaded plot method.
     """
     plt.errorbar(self.time, self.counts/self.timedel,
                  yerr=self.error/self.timedel, fmt='o')
     plt.xlabel('Time [s]')
     plt.ylabel('Rate [Hz]')
     if show:
         plt.show()
示例#8
0
 def plot(self, show=True):
     """Overloaded plot method.
     """
     plt.errorbar(self.channel, self.rate, yerr=self.error, fmt='o')
     plt.xlabel('PHA')
     plt.ylabel('Rate [Hz]')
     plt.yscale('log')
     if show:
         plt.show()
示例#9
0
文件: binning.py 项目: pabell/ximpol
 def plot(self, show=True):
     """Overloaded plot method.
     """
     fig = plt.figure('Count spectrum')
     plt.errorbar(self.channel, self.rate, yerr=self.error, fmt='o')
     plt.xlabel('PHA')
     plt.ylabel('Rate [Hz]')
     plt.yscale('log')
     if show:
         plt.show()
示例#10
0
 def plot(self, show=True, **kwargs):
     """Overloaded plot method.
     """
     if not kwargs.has_key('fmt'):
         kwargs['fmt'] = 'o'
     plt.errorbar(self.phase, self.counts, yerr=self.error,
                  xerr=0.5*self.phase_delta, **kwargs)
     plt.xlabel('Phase')
     plt.ylabel('Counts/bin')
     if show:
         plt.show()
示例#11
0
文件: binning.py 项目: pabell/ximpol
 def plot(self, show=True):
     """Overloaded plot method.
     """
     fig = plt.figure('Light curve')
     plt.errorbar(self.time,
                  self.counts / self.timedel,
                  yerr=self.error / self.timedel,
                  fmt='o')
     plt.xlabel('Time [s]')
     plt.ylabel('Rate [Hz]')
     if show:
         plt.show()
 def test_rvs(self):
     """Test the random number generation.
     """
     visibility = numpy.full(1000000, 0.5)
     phi = self.generator.rvs_phi(visibility, 0.25*numpy.pi)
     hist = plt.hist(phi, bins=numpy.linspace(0, 2*numpy.pi, 100),
                     histtype='step', label='Random angles')
     fit_results = self.generator.fit_histogram(hist)
     fit_results.plot()
     plt.xlabel('$\\phi$ [rad]')
     plt.axis([0, 2*numpy.pi, 0, None])
     overlay_tag()
     save_current_figure('test_azimuthal_resp_rvs.png',
                         show=self.interactive)
示例#13
0
文件: binning.py 项目: pabell/ximpol
 def plot_polarization_degree(self, show=True, **kwargs):
     """Plot the polarization degree as a function of energy.
     """
     if self.fit_results == []:
         self.fit()
     _x = self.emean
     _dx = [self.emean - self.emin, self.emax - self.emean]
     _y = [r.polarization_degree for r in self.fit_results]
     _dy = [r.polarization_degree_error for r in self.fit_results]
     plt.errorbar(_x, _y, _dy, _dx, fmt='o', **kwargs)
     plt.xlabel('Energy [keV]')
     plt.ylabel('Polarization degree')
     if show:
         plt.show()
示例#14
0
文件: binning.py 项目: pabell/ximpol
 def plot_polarization_degree(self, show=True, **kwargs):
     """Plot the polarization degree as a function of energy.
     """
     if self.fit_results == []:
         self.fit()
     _x = self.emean
     _dx = [self.emean - self.emin, self.emax - self.emean]
     _y = [r.polarization_degree for r in self.fit_results]
     _dy = [r.polarization_degree_error for r in self.fit_results]
     plt.errorbar(_x, _y, _dy, _dx, fmt='o', **kwargs)
     plt.xlabel('Energy [keV]')
     plt.ylabel('Polarization degree')
     if show:
         plt.show()
 def test_constant(self, num_events=1000000, polarization_degree=1.,
                   polarization_angle=numpy.radians(20.)):
     """Test the modulation factor as a random number generator when
     both the polarization angle and degrees are energy- and
     time-independent.
     """
     poldegree = numpy.full(num_events, polarization_degree)
     polangle = numpy.full(num_events, polarization_angle)
     self.modf.generator.plot(show=False)
     save_current_figure('test_modulation_constant_generator.png',
                         show=self.interactive)
     emin = self.modf.xmin()
     emax = self.modf.xmax()
     energy = numpy.random.uniform(emin, emax, num_events)
     phi = self.modf.rvs_phi(energy, poldegree, polangle)
     ebinning = numpy.linspace(emin, emax, 10)
     phi_binning = numpy.linspace(0, 2*numpy.pi, 100)
     fit_results = []
     for i, (_emin, _emax) in enumerate(zip(ebinning[:-1], ebinning[1:])):
         _emean = 0.5*(_emin + _emax)
         _mask = (energy > _emin)*(energy < _emax)
         _phi = phi[_mask]
         _hist = plt.hist(_phi, bins=phi_binning, histtype='step')
         _fr = xAzimuthalResponseGenerator.fit_histogram(_hist)
         _fr.emean = _emean
         fit_results.append(_fr)
         _fr.plot(label='Energy: %.2f--%.2f keV' % (_emin, _emax))
         plt.axis([0., 2*numpy.pi, 0., 1.2*_hist[0].max()])
         overlay_tag()
         save_current_figure('test_modulation_constant_fit_slice%d.png' % i,
                             show=self.interactive)
     _x = [_fr.emean for _fr in fit_results]
     _y = [_fr.phase for _fr in fit_results]
     _dy = [_fr.phase_error for _fr in fit_results]
     plt.errorbar(_x, _y, yerr=_dy, fmt='o')
     plt.plot(_x, numpy.array([polarization_angle]*len(_x)))
     plt.xlabel('Energy [keV]')
     plt.ylabel('Modulation angle [$^\circ$]')
     save_current_figure('test_modulation_constant_angle.png',
                         show=self.interactive)
     _y = [_fr.visibility for _fr in fit_results]
     _dy = [_fr.visibility_error for _fr in fit_results]
     plt.errorbar(_x, _y, yerr=_dy, fmt='o')
     plt.axis([emin, emax, 0, 1])
     self.modf.plot(show=False)
     plt.xlabel('Energy [keV]')
     plt.ylabel('Modulation visibility')
     save_current_figure('test_modulation_constant_visibility.png',
                         show=self.interactive)
示例#16
0
 def test_constant(self, num_events=1000000, polarization_degree=1.,
                   polarization_angle=numpy.radians(20.)):
     """Test the modulation factor as a random number generator when
     both the polarization angle and degrees are energy- and
     time-independent.
     """
     poldegree = numpy.full(num_events, polarization_degree)
     polangle = numpy.full(num_events, polarization_angle)
     self.modf.generator.plot(show=False)
     save_current_figure('test_modulation_constant_generator.png',
                         show=self.interactive)
     emin = self.modf.xmin()
     emax = self.modf.xmax()
     energy = numpy.random.uniform(emin, emax, num_events)
     phi = self.modf.rvs_phi(energy, poldegree, polangle)
     ebinning = numpy.linspace(emin, emax, 10)
     phi_binning = numpy.linspace(0, 2*numpy.pi, 100)
     fit_results = []
     for i, (_emin, _emax) in enumerate(zip(ebinning[:-1], ebinning[1:])):
         _emean = 0.5*(_emin + _emax)
         _mask = (energy > _emin)*(energy < _emax)
         _phi = phi[_mask]
         _hist = plt.hist(_phi, bins=phi_binning, histtype='step')
         _fr = xAzimuthalResponseGenerator.fit_histogram(_hist)
         _fr.emean = _emean
         fit_results.append(_fr)
         _fr.plot(label='Energy: %.2f--%.2f keV' % (_emin, _emax))
         plt.axis([0., 2*numpy.pi, 0., 1.2*_hist[0].max()])
         overlay_tag()
         save_current_figure('test_modulation_constant_fit_slice%d.png' % i,
                             show=self.interactive)
     _x = [_fr.emean for _fr in fit_results]
     _y = [_fr.phase for _fr in fit_results]
     _dy = [_fr.phase_error for _fr in fit_results]
     plt.errorbar(_x, _y, yerr=_dy, fmt='o')
     plt.plot(_x, numpy.array([polarization_angle]*len(_x)))
     plt.xlabel('Energy [keV]')
     plt.ylabel('Modulation angle [$^\circ$]')
     save_current_figure('test_modulation_constant_angle.png',
                         show=self.interactive)
     _y = [_fr.visibility for _fr in fit_results]
     _dy = [_fr.visibility_error for _fr in fit_results]
     plt.errorbar(_x, _y, yerr=_dy, fmt='o')
     plt.axis([emin, emax, 0, 1])
     self.modf.plot(show=False)
     plt.xlabel('Energy [keV]')
     plt.ylabel('Modulation visibility')
     save_current_figure('test_modulation_constant_visibility.png',
                         show=self.interactive)
示例#17
0
 def test_rvs(self):
     """Test the random number generation.
     """
     visibility = numpy.full(1000000, 0.5)
     phi = self.generator.rvs_phi(visibility, 0.25 * numpy.pi)
     hist = plt.hist(phi,
                     bins=numpy.linspace(0, 2 * numpy.pi, 100),
                     histtype='step',
                     label='Random angles')
     fit_results = self.generator.fit_histogram(hist)
     fit_results.plot()
     plt.xlabel('$\\phi$ [rad]')
     plt.axis([0, 2 * numpy.pi, 0, None])
     overlay_tag()
     save_current_figure('test_azimuthal_resp_rvs.png',
                         show=self.interactive)
示例#18
0
文件: binning.py 项目: pabell/ximpol
 def plot_polarization_angle(self, show=True, degree=True, **kwargs):
     """Plot the polarization angle as a function of energy.
     """
     if self.fit_results == []:
         self.fit()
     _x = self.emean
     _dx = [self.emean - self.emin, self.emax - self.emean]
     if degree:
         _y = [numpy.degrees(r.phase) for r in self.fit_results]
         _dy = [numpy.degrees(r.phase_error) for r in self.fit_results]
     else:
         _y = [(r.phase) for r in self.fit_results]
         _dy = [(r.phase_error) for r in self.fit_results]
     plt.errorbar(_x, _y, _dy, _dx, fmt='o', **kwargs)
     plt.xlabel('Energy [keV]')
     plt.ylabel('Polarization angle [$^\circ$]')
     if show:
         plt.show()
 def test_cdf(self):
     """Test the one-dimensional azimuthal response underlying pdf.
     """
     phi = numpy.linspace(0., 2*numpy.pi, 100)
     for visibility in numpy.linspace(1, 0, 5):
         cdf = self.generator.cdf(phi, visibility)
         plt.plot(phi, cdf, label='$\\xi = %.2f$' % visibility)
         spline = xInterpolatedUnivariateSplineLinear(phi, cdf)
         self.assertTrue(abs(spline(0.)) < 1e-5, 'cdf(0) = %.3e' % spline(0))
         self.assertTrue(abs(spline(2*numpy.pi) - 1) < 1e-5,
                         'cdf(2pi) = %.3e' % spline(2*numpy.pi))
     plt.axis([0., 2*numpy.pi, None, None])
     plt.xlabel('$\\phi$ [rad]')
     plt.ylabel('cdf($\\phi$)')
     plt.legend(bbox_to_anchor=(0.4, 0.92))
     overlay_tag()
     save_current_figure('test_azimuthal_resp_cdf.png',
                         show=self.interactive)
示例#20
0
文件: binning.py 项目: pabell/ximpol
 def plot_polarization_angle(self, show=True, degree=True, **kwargs):
     """Plot the polarization angle as a function of energy.
     """
     if self.fit_results == []:
         self.fit()
     _x = self.emean
     _dx = [self.emean - self.emin, self.emax - self.emean]
     if degree:
         _y = [numpy.degrees(r.phase) for r in self.fit_results]
         _dy = [numpy.degrees(r.phase_error) for r in self.fit_results]
     else:
         _y = [(r.phase) for r in self.fit_results]
         _dy = [(r.phase_error) for r in self.fit_results]
     plt.errorbar(_x, _y, _dy, _dx, fmt='o', **kwargs)
     plt.xlabel('Energy [keV]')
     plt.ylabel('Polarization angle [$^\circ$]')
     if show:
         plt.show()
示例#21
0
文件: spline.py 项目: pabell/ximpol
    def plot(self,
             num_points=1000,
             overlay=False,
             logx=False,
             logy=False,
             scale=1.,
             offset=0.,
             show=True,
             **kwargs):
        """Plot the spline.

        Args
        ----
        num_points : int, optional
            The number of sampling points to be used to draw the spline.

        overlay : bool, optional
            If True, the original arrays passed to the spline are overlaid.

        show : bool, optional
            If True, `plt.show()` is called at the end, interrupting the flow.
        """
        from ximpol.utils.matplotlib_ import pyplot as plt
        if not logx:
            _x = numpy.linspace(self.xmin(), self.xmax(), num_points)
        else:
            _x = numpy.logspace(numpy.log10(self.xmin()),
                                numpy.log10(self.xmax()), num_points)
        _y = scale * self(_x) + offset
        if overlay:
            plt.plot(_x, _y, '-', self.x, self.y, 'o', **kwargs)
        else:
            plt.plot(_x, _y, '-', **kwargs)
        if self.xname is not None:
            plt.xlabel(self.xlabel())
        if self.yname is not None:
            plt.ylabel(self.ylabel())
        if logx:
            plt.gca().set_xscale('log')
        if logy:
            plt.gca().set_yscale('log')
        if show:
            plt.show()
示例#22
0
文件: spline.py 项目: pabell/ximpol
    def plot(self,
             num_pointsx=100,
             num_pointsy=100,
             num_contours=75,
             logz=False,
             show=True):
        """Plot the spline.

        Args
        ----
        num_pointsx : int
            The number of x sampling points to be used to draw the spline.

        num_pointsy : int
            The number of y sampling points to be used to draw the spline.

        num_contours : int
            The number of contours for the color plot.

        show : bool, optional
            If True, `plt.show()` is called at the end, interrupting the flow.
        """
        from ximpol.utils.matplotlib_ import pyplot as plt
        _x = numpy.linspace(self.xmin(), self.xmax(), num_pointsx)
        _y = numpy.linspace(self.ymin(), self.ymax(), num_pointsy)
        _x, _y = numpy.meshgrid(_x, _y)
        _z = self(_x, _y, grid=False)
        if logz:
            from matplotlib.colors import LogNorm
            _levels = numpy.logspace(-4, numpy.log10(_z.max()), num_contours)
            contour = plt.contourf(_x, _y, _z, levels=_levels, norm=LogNorm())
        else:
            contour = plt.contourf(_x, _y, _z, num_contours)
        bar = plt.colorbar()
        if self.xname is not None:
            plt.xlabel(self.xlabel())
        if self.yname is not None:
            plt.ylabel(self.ylabel())
        if self.zname is not None:
            bar.set_label(self.zlabel())
        if show:
            plt.show()
示例#23
0
 def test_cdf(self):
     """Test the one-dimensional azimuthal response underlying pdf.
     """
     phi = numpy.linspace(0., 2 * numpy.pi, 100)
     for visibility in numpy.linspace(1, 0, 5):
         cdf = self.generator.cdf(phi, visibility)
         plt.plot(phi, cdf, label='$\\xi = %.2f$' % visibility)
         spline = xInterpolatedUnivariateSplineLinear(phi, cdf)
         self.assertTrue(
             abs(spline(0.)) < 1e-5, 'cdf(0) = %.3e' % spline(0))
         self.assertTrue(
             abs(spline(2 * numpy.pi) - 1) < 1e-5,
             'cdf(2pi) = %.3e' % spline(2 * numpy.pi))
     plt.axis([0., 2 * numpy.pi, None, None])
     plt.xlabel('$\\phi$ [rad]')
     plt.ylabel('cdf($\\phi$)')
     plt.legend(bbox_to_anchor=(0.4, 0.92))
     overlay_tag()
     save_current_figure('test_azimuthal_resp_cdf.png',
                         show=self.interactive)
示例#24
0
 def plot_bin(self, i, show=True, fit=True):
     """Plot the azimuthal distribution for the i-th energy slice.
     """
     _emin = self.emin[i]
     _emax = self.emax[i]
     _emean = self.emean[i]
     label = '%.2f-%.2f $<$%.2f$>$ keV' % (_emin, _emax, _emean)
     plt.errorbar(self.phi_x, self.phi_y[i], yerr=numpy.sqrt(self.phi_y[i]),
                  fmt='o')
     if fit:
         fit_results = self.fit_bin(i)
         fit_results.plot(label=label)
    
     plt.axis([0., 2*numpy.pi, 0.0, 1.2*self.phi_y[i].max()])
     plt.xlabel('Azimuthal angle [rad]')
     plt.ylabel('Counts/bin')
     plt.text(0.02, 0.92, label, transform=plt.gca().transAxes,
              fontsize=15)
     if show:
         plt.show()
示例#25
0
def plot_pol_map_from_ascii():
    
    output_file = get_output_file()
    logger.info('Opening file %s for plotting...' % output_file)
    emin,emax, degree, degree_error, angle, angle_error, counts = numpy.loadtxt(output_file, delimiter=',', unpack=True)
    
        
    _ra = numpy.linspace(ra_min, ra_max, num_points)
    _dec = numpy.linspace(dec_min, dec_max, num_points)

    _ra, _dec = numpy.meshgrid(_ra, _dec)
   
    fig = plt.figure()
    for i in range(len(E_BINNING) - 1):
        sigma_array = degree[emin==E_BINNING[i]]/degree_error[emin==E_BINNING[i]]
        pol_array = degree[emin==E_BINNING[i]].reshape((num_points,num_points))
        sigma_array = sigma_array.reshape((num_points,num_points))  
        ax1 = fig.add_subplot()
        label = 'XIPE %.1d ks'%(DURATION/1000.)

        plt.contourf(_ra,_dec,pol_array)
        cbar = plt.colorbar()
        cbar.ax.set_ylabel('Polarization degree')
        
        plt.text(0.02, 0.92, label, transform=plt.gca().transAxes,
                 fontsize=20,color='w')
        plt.xlabel('RA')
        plt.ylabel('DEC')
       # fig.gca().add_artist(psf)
        plt.show()
        ax2 = fig.add_subplot()
    
        plt.contourf(_ra,_dec,sigma_array)
        cbar2 = plt.colorbar()
        cbar2.ax.set_ylabel('Sigma')
        plt.text(0.02, 0.92, label, transform=plt.gca().transAxes,
                 fontsize=20,color='w')
        plt.xlabel('RA')
        plt.ylabel('DEC')
        plt.show()
示例#26
0
def plot_grb_mdp_vs_obstime(grb_name, _t_obs, t_repoint=21600, \
                            color='black', show=True):
    """Plot all the MDP (changing the repointing elapsed time defined in *arg) 
       for a given GRB.
    """
    mdp_list = []
    for obs in _t_obs:
        mdp = get_grb_mdp(grb_name,repointing=t_repoint,obs_time=obs)
        if mdp is not None:
            mdp_list.append(mdp)
        else:
            mdp_list.append(0.)
    _mdp = numpy.array(mdp_list)*100
    plt.plot(_t_obs,_mdp, marker='.',linestyle='-', lw=0.5, color=color,\
             label=grb_name)
    plt.xlabel('$\Delta t_{obs}$ [s]')
    plt.ylabel('2.-10. keV MDP (%)')
    plt.title('MDP vs $\Delta t_{obs}$, $ t_{repoint} =$ %i s'\
              %(t_repoint))
    if show:
        plt.show()
    return _mdp, _t_obs
示例#27
0
 def test_pdf(self):
     """Test the one-dimensional azimuthal response underlying pdf.
     """
     self.generator.plot(show=self.interactive)
     overlay_tag(color='white')
     save_current_figure('test_azimuthal_resp_generator.png',
                         show=self.interactive)
     phi = numpy.linspace(0., 2 * numpy.pi, 100)
     for visibility in numpy.linspace(1, 0, 5):
         pdf = self.generator.pdf(phi, visibility)
         plt.plot(phi, pdf, label='$\\xi = %.2f$' % visibility)
         spline = xInterpolatedUnivariateSplineLinear(phi, pdf)
         norm = spline.norm()
         self.assertTrue(
             abs(norm - 1.) < 1e-5, 'Normalization is %.3e' % norm)
     plt.axis([0., 2 * numpy.pi, None, None])
     plt.xlabel('$\\phi$ [rad]')
     plt.ylabel('pdf($\\phi$) [1/rad]')
     plt.legend(bbox_to_anchor=(0.88, 0.92))
     overlay_tag()
     save_current_figure('test_azimuthal_resp_pdf.png',
                         show=self.interactive)
 def test_pdf(self):
     """Test the one-dimensional azimuthal response underlying pdf.
     """
     self.generator.plot(show=self.interactive)
     overlay_tag(color='white')
     save_current_figure('test_azimuthal_resp_generator.png',
                         show=self.interactive)
     phi = numpy.linspace(0., 2*numpy.pi, 100)
     for visibility in numpy.linspace(1, 0, 5):
         pdf = self.generator.pdf(phi, visibility)
         plt.plot(phi, pdf, label='$\\xi = %.2f$' % visibility)
         spline = xInterpolatedUnivariateSplineLinear(phi, pdf)
         norm = spline.norm()
         self.assertTrue(abs(norm - 1.) < 1e-5,
                         'Normalization is %.3e' % norm)
     plt.axis([0., 2*numpy.pi, None, None])
     plt.xlabel('$\\phi$ [rad]')
     plt.ylabel('pdf($\\phi$) [1/rad]')
     plt.legend(bbox_to_anchor=(0.88, 0.92))
     overlay_tag()
     save_current_figure('test_azimuthal_resp_pdf.png',
                         show=self.interactive)
示例#29
0
def plot_grb_mdp_vs_repoint(grb_name, _t_repoint, t_obs=50000, \
                            color='black', show=True):
    """Plot all the MDP (changing the repointing elapsed time defined in *arg)
       for a given GRB.
    """
    mdp_list = []
    for repoint in _t_repoint:
        mdp = process_grb(grb_name,tstart=repoint,duration=t_obs)[-1]
        if mdp is not None:
            mdp_list.append(mdp)
        else:
            mdp_list.append(0.)
    _mdp = numpy.array(mdp_list)*100
    plt.plot(_t_repoint, _mdp, marker='.',linestyle='-', lw=0.5, color=color,\
             label=grb_name)
    plt.xlabel('$t_{repoint}$ [s]')
    plt.ylabel('2.-10. keV MDP (%)')
    plt.title('MDP vs $t_{repoint}$, $\Delta t_{obs} =$ %i s'\
              %(t_obs))
    if show:
        plt.show()
    return _mdp, _t_repoint
示例#30
0
    def plot(self, num_pointsx=100, num_pointsy=100, num_contours=75,
             logz=False, show=True):
        """Plot the spline.

        Args
        ----
        num_pointsx : int
            The number of x sampling points to be used to draw the spline.

        num_pointsy : int
            The number of y sampling points to be used to draw the spline.

        num_contours : int
            The number of contours for the color plot.

        show : bool, optional
            If True, `plt.show()` is called at the end, interrupting the flow.
        """
        from ximpol.utils.matplotlib_ import pyplot as plt
        _x = numpy.linspace(self.xmin(), self.xmax(), num_pointsx)
        _y = numpy.linspace(self.ymin(), self.ymax(), num_pointsy)
        _x, _y = numpy.meshgrid(_x, _y)
        _z = self(_x, _y, grid=False)
        if logz:
            from matplotlib.colors import LogNorm
            _levels = numpy.logspace(-4, numpy.log10(_z.max()), num_contours)
            contour = plt.contourf(_x, _y, _z, levels=_levels, norm = LogNorm())
        else:
            contour = plt.contourf(_x, _y, _z, num_contours)
        bar = plt.colorbar()
        if self.xname is not None:
            plt.xlabel(self.xlabel())
        if self.yname is not None:
            plt.ylabel(self.ylabel())
        if self.zname is not None:
            bar.set_label(self.zlabel())
        if show:
            plt.show()
示例#31
0
def makeMDP_fE_ComparisonPlot(file_path):
    scale_factor = 10.
    
    (_phase_ave, _phase_err, _energy_mean, pulsar_e_err, pulsar_e_err, mdp) =\
                                                numpy.loadtxt(file_path, unpack=True)
    print "Phase ave:",_phase_ave
    print
    print "Energy mean", _energy_mean
    #phase_values = [0.025, 0.15, 0.35, 0.675, 0.95]
    phase_values = [0.35,0.675]
    on, on_phase_color = (0.35,'r')
    off, off_phase_color = (0.675,'gray') 
    #for phase in phase_values:
        
    plt.errorbar(_energy_mean[_phase_ave==on], 100*mdp[_phase_ave==on]*(1/numpy.sqrt(scale_factor)),xerr=pulsar_e_err[_phase_ave==on], label='On Phase',fmt='o',markersize=6,ls='--',color=on_phase_color)

    plt.errorbar(_energy_mean[_phase_ave==off], 100*mdp[_phase_ave==off]*(1/numpy.sqrt(scale_factor)),xerr=pulsar_e_err[_phase_ave==off], label='Off Phase',fmt='o',markersize=6,ls='--',color=off_phase_color)
    
    plt.legend()
    plt.ylabel('MPD 99\%')
    plt.xlabel('Energy (keV)')
    plt.savefig('crab_complex_mdp_imaging_fE_%i.png'%(SIM_DURATION*scale_factor/1000.))
    plt.show()
示例#32
0
文件: binning.py 项目: pabell/ximpol
 def plot_bin(self, i, show=True, fit=True):
     """Plot the azimuthal distribution for the i-th energy slice.
     """
     _emin = self.emin[i]
     _emax = self.emax[i]
     _emean = self.emean[i]
     label = '%.2f-%.2f $<$%.2f$>$ keV' % (_emin, _emax, _emean)
     plt.errorbar(self.phi_x,
                  self.phi_y[i],
                  yerr=numpy.sqrt(self.phi_y[i]),
                  fmt='o')
     if fit:
         fit_results = self.fit_bin(i)
         fit_results.plot(label=label)
     view_range = 1.5 * (self.phi_y[i].max() - self.phi_y[i].min())
     view_ymin = self.phi_y[i].min() - view_range
     view_ymax = self.phi_y[i].max() + view_range
     plt.axis([0., 2 * numpy.pi, view_ymin, view_ymax])
     plt.xlabel('Azimuthal angle [rad]')
     plt.ylabel('Counts/bin')
     plt.text(0.02, 0.92, label, transform=plt.gca().transAxes, fontsize=15)
     if show:
         plt.show()
示例#33
0
def view():
    #_energy_mean,_emin, _emax, _pol_deg, _pol_deg_err, _pol_angle, \
    #    _pol_angle_err = \
     #   #                numpy.loadtxt(ANALYSIS_FILE_PATH, unpack=True)
    
    _mcube = xBinnedModulationCube(MCUBE_FILE_PATH)
    _mcube.fit()
    _fit_results = _mcube.fit_results[0]
    plt.figure('Polarization degree')
    _mcube.plot_polarization_degree(show=False, color='blue')
    pol_degree_spline.plot(color='lightgray',label='Model %s corona'%model_type, show=False)
    plt.figtext(0.2, 0.85,'XIPE %s ks'%(SIM_DURATION/1000.),size=18)
    #plt.errorbar(_energy_mean, _pol_deg, yerr=_pol_deg_err, color='blue',marker='o')
    
    plt.legend()

    plt.figure('Polarization angle')
    _mcube.plot_polarization_angle(show=False, color='blue', degree=False)
    pol_angle_spline.plot(color='lightgray',label='Model %s corona'%model_type, show=False)
    plt.figtext(0.2, 0.85,'XIPE %s ks'%(SIM_DURATION/1000.),size=18)
    #plt.errorbar(_energy_mean,_pol_angle, yerr= _pol_angle_err,color='blue',marker='o')

    plt.legend()
    plt.figure('MDP %s'%base_name)
    mdp = _mcube.mdp99
    emean = _mcube.emean
    emin =  _mcube.emin
    emax =  _mcube.emax
    width = (emax-emin)/2.
    plt.errorbar(emean,mdp,xerr=width, label='MDP99',marker='o',linestyle='--')
    plt.figtext(0.2, 0.85,'XIPE %s ks'%(SIM_DURATION/1000.),size=18)
    plt.xlim([1,10])
    plt.ylabel('MPD 99 %')
    plt.xlabel('Energy (keV)')
    #plt.legend()
    plt.show()
示例#34
0
    def plot(self, num_points=1000, overlay=False, logx=False, logy=False,
             scale=1., offset=0., show=True, **kwargs):
        """Plot the spline.

        Args
        ----
        num_points : int, optional
            The number of sampling points to be used to draw the spline.

        overlay : bool, optional
            If True, the original arrays passed to the spline are overlaid.

        show : bool, optional
            If True, `plt.show()` is called at the end, interrupting the flow.
        """
        from ximpol.utils.matplotlib_ import pyplot as plt
        if not logx:
            _x = numpy.linspace(self.xmin(), self.xmax(), num_points)
        else:
            _x = numpy.logspace(numpy.log10(self.xmin()),
                                numpy.log10(self.xmax()), num_points)
        _y = scale*self(_x) + offset
        if overlay:
            plt.plot(_x, _y, '-', self.x, self.y, 'o', **kwargs)
        else:
            plt.plot(_x, _y, '-', **kwargs)
        if self.xname is not None:
            plt.xlabel(self.xlabel())
        if self.yname is not None:
            plt.ylabel(self.ylabel())
        if logx:
            plt.gca().set_xscale('log')
        if logy:
            plt.gca().set_yscale('log')
        if show:
            plt.show()
示例#35
0
# _disp = numpy.random.uniform(0.7, 2., len(blazar_list))

plt.figure("Average polarization degree", (11, 8))
_x = numpy.logspace(-13, -7, 100)
for obs_time in [1.0e3, 10.0e3, 100.0e3, 1.0e6]:
    _y = 100.0 * mdp_ref * numpy.sqrt(OBS_TIME_REF / obs_time * FLUX_REF / _x)
    plt.plot(_x, _y, color=GRID_COLOR, ls="dashed", lw=0.6)
    _i = 51
    if obs_time is 1.0e3:
        _x_text = _x[_i]
        _y_text = _y[_i]
    plt.text(_x_text, _y_text, "$T_{obs} =$ %d ks" % (obs_time / 1000.0), color=GRID_COLOR, rotation=-43.0, size=14)
    _x_text /= 10
plt.xscale("log")
plt.yscale("log")
plt.xlabel("Integral energy flux %.0f-%.0f keV [erg cm$^{-2}$ s$^{-1}$]" % (E_MIN, E_MAX))
plt.ylabel("MDP 99% CL [%]")

for j, blazar in enumerate(blazar_list):
    _x_max = blazar["flux_max"]
    _x_min = blazar["flux_min"]
    _y_max = blazar["p_opt_max"]
    _y_min = blazar["p_opt_min"]
    plt.plot([_x_min, _x_max, _x_max], [_y_max, _y_max, _y_min], color=_color[:, j], lw=1.5)
    _x_text = numpy.sqrt((_x_max) * (_x_min))
    if j in mirror_list:
        _y_text = 0.88 * _y_max
    else:
        _y_text = 1.02 * _y_max
    plt.text(_x_text, _y_text, blazar["name"], color=_color[:, j], horizontalalignment="center", size="large")
plt.axis([1e-13, 1e-8, 0.5, 50])
示例#36
0
                                              r in mod_cube.fit_results])

for i in range(0, len(mod_cube.emax)):
    cnts = mod_cube.counts[i]
    logger.info('%.2f--%.2f keV: %d counts in %d s, mu %.3f, MDP %.2f%%' %\
            (mod_cube.emin[i], mod_cube.emax[i], mod_cube.counts[i], TIME,
             mod_cube.effective_mu[i], 100*mod_cube.mdp99[i]))
logger.info('Done.')

pol_deg = numpy.mean(pol_degree_array, axis=0)
pol_deg_err = numpy.mean(pol_degree_error_array, axis=0)
pol_ang = numpy.mean(pol_angle_array, axis=0)
pol_ang_err = numpy.mean(pol_angle_error_array, axis=0)

fig = plt.figure('Polarization degree')
plt.xlabel('Energy [keV]')
plt.ylabel('Polarization degree')
bad = pol_deg < 3*pol_deg_err
good = numpy.invert(bad)
bad[len(E_BINNING)-1] = False
good[len(E_BINNING)-1] = False
_dx = numpy.array([mod_cube.emean - mod_cube.emin, mod_cube.emax - mod_cube.emean])
if bad.sum() > 0:
    plt.errorbar(mod_cube.emean[bad], pol_deg[bad], pol_deg_err[bad],
                            _dx.T[bad].T, fmt='o', label='Data', color='gray')
if good.sum() > 0:
    plt.errorbar(mod_cube.emean[good], pol_deg[good], pol_deg_err[good],
                            _dx.T[good].T, fmt='o', label='Data', color='blue')
pol_degree.plot(show=False, label='Model', linestyle='dashed', color='green')
plt.legend(bbox_to_anchor=(0.30, 0.95))
plt.axis([1, 10, 0, 0.1])
示例#37
0
def main():
    """Produce some plots
    """
    # If process_grb_mdp = True, produces a fits file with all the 
    # main infos on each grb
    if process_grb_mdp == True:
        data = process_grb_list(duration=50000.)
        build_grb_fits_file(data,OUTFILE)
    
    # 1) the plot of the MDP for all the Swift GRBs
    #    and a given repointing time
    # 2) the cumulative of the previous histogram
    # 3) the plot of the correlation between MDP for all the Swift
    #    GRBs and a given repointing time and the integral prompt
    #    (first 10 min) flux

    # 1)------------------------------------------------------
    plt.figure(figsize=(10, 6), dpi=80)
    bins = numpy.linspace(0, 100, 100)
    hdulist = fits.open(OUTFILE)
    grbdata = hdulist[1].data
    _mdp = grbdata['MDP 99%']
    t_obs = '50000'
    t_rep = '21600'
    plt.title('%i GRBs, $\Delta t_{obs}=%s s,$ $t_{repoint}=%s s$'\
              %(len(_mdp),t_obs,t_rep))
    plt.hist(_mdp*100, bins, alpha=0.5)
    plt.xlabel('2.-10. keV MDP (%)')
    plt.ylabel('Number of GRBs')
    overlay_tag()
    save_current_figure('all_grbs_MDP_histo', clear=False)

    # 2)----------------------------------------------------
    plt.figure(figsize=(10, 6), dpi=80)
    plt.title('%i GRBs, $\Delta t_{obs}=%s s,$ $t_{repoint}=%s s$'\
              %(len(_mdp),t_obs,t_rep))
    (n, bins, patches) = plt.hist(_mdp*100, bins, histtype='step', \
                                  cumulative=True)
    plt.xlabel('2.-10. keV MDP (%)')
    plt.ylabel('Cumulative number of GRBs')
    for i in range(0,30):
        print 'MDP %.2f%%: %i GRBs'%(i,n[i])
    overlay_tag()
    save_current_figure('all_grbs_MDP_cumulative', clear=False)

    # 3)------------------------------------------------------
    plt.figure(figsize=(10, 6), dpi=80)
    ax = plt.gca()
    _prompt_tstart = grbdata['PROMPT_START']
    _flux = grbdata['PROMPT_FLUX']
    _good_indexes = numpy.where(_prompt_tstart>350)
    _flux = numpy.delete(_flux,_good_indexes)
    _mdp = numpy.delete(_mdp,_good_indexes)
    plt.scatter(_mdp*100, _flux, s=30, marker='.', color='blue')
    plt.xlabel('2.-10. keV MDP (%)')
    plt.ylabel('[erg $\cdot$ cm$^{-2}$]')
    plt.title('%i GRBs, $\Delta t_{obs}=%s s,$ $t_{repoint}=%s s$'%(len(_flux),\
                                                                    t_obs,t_rep))
    plt.xlim(1, 100)
    plt.ylim(1e-9,1e-4)
    plt.plot([20, 20], [1e-9,1e-4], 'k--', lw=1, color='green')
    ax.set_yscale('log')
    ax.set_xscale('log')
    overlay_tag()
    save_current_figure('grb_MDP_prompt',clear=False)
    plt.show()



    # If mdp_vs_time = True Produces:
    # 1) the plot of the MDP for a given GRB
    #    as a function of the repointing time
    # 2) the plot of the MDP for a given GRB
    #    as a function of the observation duration
    color_list = ['red','salmon','goldenrod','darkgreen','limegreen',\
                  'royalblue','mediumpurple','darkviolet','deeppink']\
                  #'yellow','darkcyan'] 
    if mdp_vs_time == True:
        grb_list = ['GRB 060729', 'GRB 080411', 'GRB 091127', 'GRB 111209A',\
                    'GRB 120711A', 'GRB 130427A', 'GRB 130505A', 'GRB 130907A',\
                    'GRB 150403A']

        #1)------------------------------------------------------
        plt.figure(figsize=(10, 6), dpi=80)
        ax = plt.gca()
        for i,grb in enumerate(grb_list):
            repointing_time = numpy.logspace(2,4.8,20)
            plot_grb_mdp_vs_repoint(grb,repointing_time,show=False,\
                                    color=color_list[i])
        ax.legend(loc='upper left', shadow=False, fontsize='small')
        #plt.ylim(0,100)
        plt.plot([21600, 21600], [0, 100], 'k--', lw=1, color='green')
        plt.plot([43200, 43200], [0, 100], 'k--', lw=1,color='green')
        ax.set_yscale('log')
        ax.set_xscale('log')
        overlay_tag()
        save_current_figure('grb_MDP_vs_repoint',clear=False)

        #2)------------------------------------------------------
        plt.figure(figsize=(10, 6), dpi=80)
        ax = plt.gca()
        for i,grb in enumerate(grb_list):
            obs_time = numpy.logspace(3,5,30)
            plot_grb_mdp_vs_obstime(grb,obs_time,show=False,color=color_list[i])
        ax.legend(loc='upper right', shadow=False, fontsize='small')
        ax.set_yscale('log')
        ax.set_xscale('log')
        overlay_tag(x=0.5)
        save_current_figure('grb_MDP_vs_obstime',clear=False)
        plt.show()
示例#38
0
def main():
    """Produce some plots
    """
    # If all_mdp = True, produces: 
    # 1) the plot of the MDP for all the Swift GRBs 
    #    and a given repointing time
    # 2) the plot of the correlation between MDP for all the Swift 
    #    GRBs and a given repointing time and the integral prompt 
    #    (first 10 min) flux
    all_mdp = True
    if all_mdp == True:
        grb_list = get_all_swift_grb_names()
        t_rep = 21600
        t_obs = 100000
        promt_time = 600
        mdp_list1,mdp_list2, flux_list, t0_list = [], [], [], []
        c, good_grb = [], []
        for grb in grb_list:
            mdp = get_grb_mdp(grb,repointing=t_rep,obs_time=t_obs)
            flux, t0 = get_integral_flux(grb,delta_t=promt_time)
            if mdp is not None and flux is not None:
                mdp_list1.append(mdp*100)
                if t0 < 350:
                    if mdp*100 <= 15:
                        c.append('red')
                    else:
                        c.append('blue')
                    mdp_list2.append(mdp*100)
                    flux_list.append(flux)
                    t0_list.append(t0)
                else:
                    continue
        _mdp1 = numpy.array(mdp_list1)
        _mdp2 = numpy.array(mdp_list2)
        _flux = numpy.array(flux_list)
        _t0 = numpy.array(t0_list)
        # 1)------------------------------------------------------
        histo = plt.figure(figsize=(10, 6), dpi=80)
        bins = numpy.linspace(0, 100, 100)
        plt.title('%i GRBs, $\Delta t_{obs}=%i s,$ $t_{repoint}=%i s$'\
                  %(len(_mdp1),t_obs,t_rep))
        plt.hist(_mdp1, bins, alpha=0.5)
        plt.xlabel('2.-10. keV MDP (%)')
        plt.ylabel('Number of GRBs')
        overlay_tag()
        save_current_figure('all_grbs_MDP_histo', clear=False)
        plt.show()
        # 1.1)----------------------------------------------------
        histo = plt.figure(figsize=(10, 6), dpi=80)
        bins = numpy.linspace(0, 100, 100)
        plt.title('%i GRBs, $\Delta t_{obs}=%i s,$ $t_{repoint}=%i s$'\
                  %(len(_mdp1),t_obs,t_rep))
        (n, bins, patches) = plt.hist(_mdp1, bins, histtype='step', cumulative=True)
        plt.xlabel('2.-10. keV MDP (%)')
        plt.ylabel('Cumulative number of GRBs')
        for i in range(0,len(bins)):
            print 'MDP %.2f%%: %i GRBs'%(i,n[i])
        overlay_tag()
        save_current_figure('all_grbs_MDP_cumulative', clear=False)
        plt.show()
        # 2)------------------------------------------------------
        plt.figure(figsize=(10, 6), dpi=80)
        ax = plt.gca()
        plt.scatter(_mdp2, _flux, s=30, marker='.', color=c)
        plt.xlabel('2.-10. keV MDP (%)')
        plt.ylabel('[keV$^{-1}$ cm$^{-2}$]')
        plt.title('$\Delta t_{obs}=%i s,$ $t_{repoint}=%i s$'%(t_obs,t_rep))
        plt.xlim(1, 100)
        ax.set_yscale('log')
        ax.set_xscale('log')
        overlay_tag()
        save_current_figure('grb_MDP_prompt',clear=False)
        plt.show()
    
    # If mdp_vs_time = True Produces: 
    # 1) the plot of the MDP for a given GRB 
    #    as a function of the repointing time
    # 2) the plot of the MDP for a given GRB 
    #    as a function of the observation duration
    mdp_vs_time = False
    color_list = []
    if mdp_vs_time == True:
        grb_list = ['GRB 060729', 'GRB 080411', 'GRB 091127', 'GRB 111209A',\
                    'GRB 120711A', 'GRB 130427A', 'GRB 130505A', 'GRB 130907A',\
                    'GRB 150403A']
        #1)------------------------------------------------------
        plt.figure(figsize=(10, 6), dpi=80)
        ax = plt.gca()
        for grb in grb_list:
            c = [random.uniform(0,1),random.uniform(0,1),random.uniform(0,1)]
            color_list.append(c)
            repointing_time = numpy.logspace(2,4.8,30)
            plot_grb_mdp_vs_repoint(grb,repointing_time,show=False,color=c)
        ax.legend(loc='upper left', shadow=False, fontsize='small')
        plt.plot([21600, 21600], [0, 30], 'k--', lw=1, color='green')
        plt.plot([43200, 43200], [0, 30], 'k--', lw=1,color='green')
        ax.set_yscale('log')
        ax.set_xscale('log')
        overlay_tag()
        save_current_figure('grb_MDP_vs_repoint',clear=False)
        plt.show()
        #2)------------------------------------------------------
        plt.figure(figsize=(10, 6), dpi=80)
        ax = plt.gca()
        for i,grb in enumerate(grb_list):
            obs_time = numpy.logspace(3,5,30)
            plot_grb_mdp_vs_obstime(grb,obs_time,show=False,color=color_list[i])
        ax.legend(loc='upper right', shadow=False, fontsize='small')
        plt.plot([50000, 50000], [0, 50], 'k--', lw=1, color='green')
        ax.set_yscale('log')
        ax.set_xscale('log')
        overlay_tag(x=0.5)
        save_current_figure('grb_MDP_vs_obstime',clear=False)
        plt.show()