示例#1
0
def errorEstimationTerr(cdf_value, *args):
    """
    Return total error given moments/variances
    """
    assembledEstimationsList = packedList(args)
    return assembledEstimationsList[0] + normalInverseCDF(
        cdf_value[0]) * np.sqrt(assembledEstimationsList[1])
示例#2
0
def minimalCostStatisticalError(inputDict, newLevels):
    """Compute sample numbers to satisfy tolerance on statistical error with minimal cost."""
    # Variances
    variances = inputDict["blendedVariances"]
    if variances is None:
        # Variance was not blended
        hierarchy = inputDict["oldHierarchy"]
        if inputDict["parametersForModel"] is not None:
            # We have a valid model
            variance_params = inputDict["parametersForModel"][1]
            variance_model = inputDict["models"][1]
            variances = [variance_model(variance_params, l) for l in newLevels]
            # Use sample estimation for first level
            variances[0] = inputDict["estimations"][-1][0] * hierarchy[0][1]
        else:
            # No model: fall back to sample estimations
            variances = [v * n[1] for v, n in zip(inputDict["estimations"][-1], hierarchy)]

    # Costs
    cost_parameters = inputDict["costParameters"]
    if cost_parameters is not None:
        # We have a valid model
        cost_model = inputDict["costModel"]
        costs = [cost_model(cost_parameters, l) for l in newLevels]
        # Use sample estimation for first level
        costs[0] = inputDict["costEstimations"][0]
    else:
        # No model: fall back to sample estimations
        costs = inputDict["costEstimations"]

    # Compute this term - sum_{k=0}^L sqrt(C_k V_k) for later use
    cost_variance_sum = 0.0
    for i, cost in enumerate(costs):
        cost_variance_sum += np.sqrt(cost * variances[i])

    # Factor for sample numbers, independent of level
    cdf_value = normalInverseCDF(inputDict["errorParameters"][0][0])
    tolerance = inputDict["tolerances"][0] * inputDict["splittingParameter"]
    constantFactor = (cdf_value / tolerance) ** 2 * cost_variance_sum

    # Compute number of samples
    new_samples = []
    for i in range(len(newLevels)):
        if i > len(costs) - 1:
            # No data for this level. Set sample number to zero.
            # The hierarchy optimiser enforces the minimal number of samples per level
            new_samples.append(0)
            continue
        variance_level = variances[i]
        new_sample_nb = constantFactor * np.sqrt(variance_level / costs[i])
        new_samples.append(int(np.ceil(new_sample_nb)))
    return new_samples
示例#3
0
def errorEstimationStatError(cdfValue, globalEstimations):
    """
    Accept the summation over the variances divided by number of samples over all
    levels and return its square root as the statistical error
    """
    if cdfValue is None:
        cdfValue = 1  # default behavior
    else:
        cdfValue = normalInverseCDF(
            cdfValue[0])  # [Pisaroni et al.,CMLMC,pag.25]
    error = cdfValue * np.sqrt(globalEstimations[0])
    # Ensure no NumPy type
    return float(error)
示例#4
0
 def test_normalInverseCDF(self):
     correct_inverse_cdf_values = [
         -2.3263478740408408, -1.180559456612439, -0.7461851862161866,
         -0.4215776353171568, -0.13689839042801627, 0.13689839042801613,
         0.4215776353171568, 0.7461851862161862, 1.180559456612439,
         2.3263478740408408
     ]
     cdf_values = np.linspace(0.01, 0.99, num=10)
     inverse_cdf_values = [
         tools.normalInverseCDF(value) for value in cdf_values
     ]
     for i in range(0, len(inverse_cdf_values)):
         self.assertEqual(inverse_cdf_values[i],
                          correct_inverse_cdf_values[i])
示例#5
0
def errorEstimationStatError(ignore, *args):
    """
    Accept the summation over the variances divided by number of samples over all
    levels and return its square root as the statistical error
    """
    assembledEstimationsList = packedList(args)
    # TODO - Think of better place for this assertion
    assert (
        len(assembledEstimationsList) == 1
    ), "length of assembledEstimationsList passed to errorEstimationStatError is not 1"
    if ignore is None:
        cdf_value = 1  # default behavior
    else:
        cdf_value = normalInverseCDF(
            ignore[0])  # [Pisaroni et al.,CMLMC,pag.25]
    return cdf_value * np.sqrt(assembledEstimationsList[0])
示例#6
0
    def setUp(self):
        self.variableDimension = int(self._randomGenerator.uniform(1, 11, 1))
        self.mean = self._randomGenerator.uniform(-10, 10,
                                                  self.variableDimension)
        self.variance = self._randomGenerator.uniform(0.1, 0.5,
                                                      self.variableDimension)

        # Set number of samples
        # Accepted probability that estimated expectation does not satisfy tolerance
        failureProbability = 10**-4
        requiredStD = normalInverseCDF(1 -
                                       failureProbability / 2) / self.tolerance
        # Choose number of samples to get this failure probability
        self.numberOfSamples = int(np.max(self.variance * requiredStD**2))
        # Safety factor for higher-order moments
        self.numberOfSamples = self.numberOfSamples**2
        # Safety bounds
        self.numberOfSamples = max(10**3, min(10**6, self.numberOfSamples))