def user_rep_to_answers_and_questions(k, user_lines, posts_lines): reputation = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'Reputation'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) posts = posts_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['OwnerUserId', 'PostTypeId'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) questions = posts \ .filter(lambda a: a[1] == 1) \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) answers = posts \ .filter(lambda a: a[1] == 2) \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) # (user_id, (answer_count, question_count)) ratio = answers.join(questions) # (user_id, (user_rep, (answer_count, question_count))) result = reputation.join(ratio) # (user_rep, answer_count, question_count) flat_result = result.map(lambda a: (a[1][0], a[1][1][0], a[1][1][1])) return KMeans(k).fit(flat_result)
def user__reputation__to__own_questions_answered(k, user_lines, post_lines): # (user_id, rep) user_id_reputation = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'Reputation'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) # (user_id, n_questions) user_id_questions = post_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'OwnerUserId', 'PostTypeId'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 3) and a[2] == 1) \ .map(lambda a: (a[0], a[1])) # (user_id, n_asked) user_id_answers = post_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['ParentId', 'OwnerUserId', 'PostTypeId'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 3) and a[2] == 2) \ .map(lambda a: (a[0], a[1])) # (user_id, n_questions_self_answered) user_id_own_answers = user_id_questions.intersection(user_id_answers) \ .map(lambda a: (a[1], 1)) \ .reduceByKey(add) # (rep, n_questions_self_answered) result = user_id_reputation.join(user_id_own_answers).map( lambda a: (a[1][0], a[1][1])) return KMeans(k).fit(result)
def user__upvotes_cast__to__average_post_length__to__profile_views( k, users, posts): """ Classifies users based on the following: - amount of upvotes a user has cast - user's average post length (question and answer) - user's profile views :param k: Number of clusters :param users: RDD with XML file with users :param posts: RDD with XML file with posts :return: RDD of clustered data """ # (user_id, average_post_length) user_avg_post_length = posts\ .map(lambda line: xml_parser.extract_attributes(line, ['OwnerUserId', 'Body']))\ .filter(lambda a: helpers.is_valid_tuple(a, 2))\ .map(lambda data: (int(data[0]), len(data[1])))\ .aggregateByKey((0, 0), lambda a, b: (a[0] + b, a[1] + 1), lambda a, b: (a[0] + b[0], a[1] + b[1]))\ .mapValues(lambda value: value[0] / value[1]) # (id, (upvotes_cast, profile_views)) user_data = users\ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'UpVotes', 'Views'], int))\ .filter(lambda a: helpers.is_valid_tuple(a, 3))\ .map(lambda data: (data[0], (data[1], data[2]))) # (upvotes_cast, views, average_post_length) joined_data = user_data.join(user_avg_post_length)\ .map(lambda data: (data[1][0][0], data[1][0][1], data[1][1])) return KMeans(k).fit(joined_data)
def user_questions_answered(k, posts_lines): result = posts_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['OwnerUserId', 'PostTypeId'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2) and a[1] == 2) \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) \ .map(lambda a: (a[1],)) return KMeans(k).fit(result)
def user__reputation__to__distinct_post_tags(k, user_lines, post_lines): # (user_id, reputation) rep = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'Reputation'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) # (user_id, number_distinct_tags) user_id_tags = post_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['OwnerUserId', 'Tags'])) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) \ .map(lambda a: (int(a[0]), a[1].replace(">", "")[1:])) \ .map(lambda a: (a[0], a[1].split("<"))) \ .flatMapValues(lambda a: a) \ .distinct() \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) # (rep, number_distinct_tags) result = rep.join(user_id_tags).map(lambda a: (a[1][0], a[1][1])) return KMeans(k).fit(result)
def user__badges__to__signup__to__answers_and_questions( k, user_lines, badges_lines, posts_lines): # (user_id, signup) user_id_signup = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'CreationDate'])) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) \ .map(lambda a: (int(a[0]), helpers.datetime_to_timestamp(a[1]))) # (user_id, number_badges) user_id_badges = badges_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['UserId'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 1)) \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) # (user_id, post_type) posts = posts_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['OwnerUserId', 'PostTypeId'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) \ # (user_id, n_answers) user_id_answers = posts \ .filter(lambda a: a[1] == 2) \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) # (user_id, n_asked) user_id_questions = posts \ .filter(lambda a: a[1] == 1) \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) # (n_questions, n_answers, n_badges, signup) result = user_id_signup.join(user_id_badges) result = result.join(user_id_answers) result = result.join(user_id_questions) result = result.map(lambda a: (a[1][1], a[1][0][1], a[1][0][0][1], a[1][0][0][0])) return KMeans(k).fit(result)
def user__signup__to__distinct_post_tags(k, user_lines, post_lines): # (user_id, signup_as_timestamp) creation_date = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'CreationDate'])) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) \ .map(lambda a: (int(a[0]), helpers.datetime_to_timestamp(a[1]))) # (user_id, number_distinct_tags) user_id_tags = post_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['OwnerUserId', 'Tags'])) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) \ .map(lambda a: (int(a[0]), a[1].replace(">", "")[1:])) \ .map(lambda a: (a[0], a[1].split("<"))) \ .flatMapValues(lambda a: a) \ .distinct() \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) # (signup_as_timestamp, number_distinct_tags) result = creation_date.join(user_id_tags).map(lambda a: (a[1][0], a[1][1])) return KMeans(k).fit(result)
def user__membership_time__to__closed_questions(k, users, posts, post_history): """ Classifies users based on the following: - amount of time a user has been a member - number of close or delete votes any of their posts have received :param k: Number of clusters :param users: RDD with XML file with users :param posts: RDD with XML file with posts :param post_history: RDD with XML file with post history :return: RDD of clustered data """ # (user_id, timestamp) user_data = users\ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'CreationDate']))\ .filter(lambda a: helpers.is_valid_tuple(a, 2))\ .map(lambda data: (int(data[0]), helpers.datetime_to_timestamp(data[1])))\ # (post_id, author_user_id) post_data = posts\ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'OwnerUserId'], int))\ .filter(lambda a: helpers.is_valid_tuple(a, 2)) # (post_id, number_of_close_and_delete_votes) post_history_data = post_history\ .map(lambda line: xml_parser.extract_attributes(line, ['PostId', 'PostHistoryTypeId'], int))\ .filter(lambda a: helpers.is_valid_tuple(a, 2) and a[1] in [10, 12])\ .map(lambda a: (a[0], 1))\ .reduceByKey(add) # (user_id, number_of_close_and_delete_votes) user_delete_and_close_count = post_data.join(post_history_data)\ .map(lambda a: a[1])\ .reduceByKey(add) # (timestamp, number_of_close_and_delete_votes) data = user_data.join(user_delete_and_close_count).map(lambda a: a[1]) return KMeans(k).fit(data)
def post__edits__average__to__user_rep(k, user_lines, post_history_lines): """ Classifies users based on the following: - number of times a user's post has been edited - user's reputation :param k: Number of clusters :param user_lines: RDD with XML file with users :param post_history_lines: RDD with XML file with post history :return: RDD of clustered data """ reputations = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Id', 'Reputation'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) post_edits_average = post_history_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['UserId', 'PostHistoryTypeId'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2) and a[1] == 5) \ .map(lambda a: (a[0], 1)) \ .reduceByKey(add) result = reputations.join(post_edits_average).map(lambda value: value[1]) return KMeans(k).fit(result)
def user__reputation__to__upvotes_cast(k, user_lines): """ Classifies users based on the following: - user reputation - user upvotes cast :param k: Number of clusters :param user_lines: PythonRDD containing the lines in the users XML file :return: RDD of clustered data """ result = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Reputation', 'UpVotes'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) return KMeans(k).fit(result)
def length__aboutme__to__user_rep(k, user_lines): """ Classifies users based on the following: - length of about me - user reputation :param k: Number of clusters :param user_lines: RDD with XML file with users :return: RDD of clustered data """ result = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Reputation', 'AboutMe'])) \ .filter(lambda a: helpers.is_valid_tuple(a, 2)) \ .map(lambda a: (int(a[0]), len(a[1]))) return KMeans(k).fit(result)
def test_extract_attributes(self): xml = '<user id="19" date=" 2009-01-12T19:07:38.647 " name="Tassos " />' values = xml_parser.extract_attributes(xml, ["date", "name"]) self.assertEqual(values, ("2009-01-12T19:07:38.647", "Tassos"))
def test_extract_attributes_casts_values(self): xml = '<user id="19" rep="90050" year="2017" />' values = xml_parser.extract_attributes(xml, ["id", "rep", "year"], int) self.assertEqual(values, (19, 90050, 2017))
def user_downvotes_cast(k, user_lines): result = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['DownVotes'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 1)) return KMeans(k).fit(result)
def user_rep(k, user_lines): result = user_lines \ .map(lambda line: xml_parser.extract_attributes(line, ['Reputation'], int)) \ .filter(lambda a: helpers.is_valid_tuple(a, 1)) return KMeans(k).fit(result)