示例#1
0
文件: NLP.py 项目: hx-Tang/py-web
 def comment_Analysis(self, commmentlist):  #对每条评价进行打分,最高1.0,分越低说明评价越消极
     xm.set_stopword('手机关键词停词表.txt')
     totalscore = 0
     for commtent in commmentlist:
         totalscore = totalscore + xm.sentiment(commtent)
     avescore = totalscore / len(commmentlist)
     return avescore
示例#2
0
def get_data():

    html = login()
    if (html == False):
        get_cookie()
        html = login()
    else:
        soup = BeautifulSoup(html.content, 'lxml')

        friends = soup.findAll(attrs={'class': 'f-name q_namecard'})

        msgs = soup.findAll(attrs={'class': 'f-info'})
        with open('data.csv', 'a+', encoding='utf-8') as fo:
            for i in range(len(friends) - 1):
                num = str(friends[i].attrs['href'])
                doc = msgs[i].text
                score = xmnlp.sentiment(doc)
                print(doc)
                print('Score: ', score)
                res = ""
                if score > 0.49:
                    res = '积极'
                else:
                    res = '消极'

                print("%s,%s,%s,%d,%s" %
                      (friends[i].text, num.split('/')[-1], doc, score, res))
                fo.writelines("%s,%s,%s,%s,%s\n" %
                              (friends[i].text, num.split('/')[-1], doc,
                               str(score), res))

            fo.close()
示例#3
0
 def create(cls, cfg):
     # type: (RasaNLUModelConfig) -> JiebaTokenizer
     #模块的算法加载。
     import xmnlp
     #xmnlp.set_stopword('/path/to/stopword.txt') # 用户自定义停用词
     #下次补上具体creat的代码
     doc = """这件衣服的质量也太差了吧!"""
     print('Load sentiment analyzer.Text: ', doc, 'score',
           xmnlp.sentiment(doc))
     component_conf = cfg.for_component(cls.name, cls.defaults)
     analyzer = xmnlp.sentiment
     return cls(component_conf, analyzer)
示例#4
0
def addscore(chart):
    # add a column containing the sentiment score on the original 4-column chart
    chart1 = copy.deepcopy(chart)
    for vvv in range(len(chart1)):
        if len((chart1[vvv])[3]) == 0:
            chart1[vvv].append("blank")
            chart1[vvv].append("blank")
            chart1[vvv].append("blank")
        else:
            x = (chart1[vvv])[3]
            s = SnowNLP(chart1[vvv][3])
            t1 = xmnlp.sentiment(x)
            t2 = s.sentiments
            t3 = (t1 + t2) / 2
            chart1[vvv].append(t1)
            chart1[vvv].append(t2)
            chart1[vvv].append(t3)
    return chart1
示例#5
0
文件: sentiment.py 项目: hulu7/news
    def analysis(self, filein_path, fileout_path):
        isFileInExists = os.path.exists(filein_path)
        isFileOutExists = os.path.exists(fileout_path)
        if isFileInExists is False:
            print 'in file: {0} not exits.'.format(filein_path)
            return
        if isFileOutExists is False:
            print 'out file: {0} not exits.'.format(fileout_path)
            self.writeToCSVWithoutHeader(fileout_path, [
                'share_number', 'comment_number', 'url', 'title', 'sentiment'
            ])
            print 'create an new out file: {0}.'.format(fileout_path)

        in_content = self.readFromCSV(filein_path)
        in_content.pop(0)
        for item in in_content:
            s = xmnlp.sentiment(item[3])
            self.writeToCSVWithoutHeader(
                fileout_path, [item[0], item[1], item[2], item[3], s])
            print "{0}--{1}".format(item[3], s)
示例#6
0
def get_pos_neg(text_list):
    positive_texts = []
    negative_texts = []
    for text in text_list:
        text = text.replace('<','')
        text = text.replace(' ','')
        if len(text)>0:
            score1 = SnowNLP(text).sentiments
            score2 = xmnlp.sentiment(text)
            tmp = "".join(jieba.analyse.textrank(text))
            if len(tmp)>0:
                score3 = SnowNLP(tmp).sentiments
                if score1<0.45 and score2<0.45 and score3<0.45:
                    negative_texts.append(text)
                if score1>0.55 and score2>0.55 and score3>0.55:
                    positive_texts.append(text)
            if len(tmp)==0:
                if score1<0.45 and score2<0.45:
                    negative_texts.append(text)
                if score1>0.55 and score2>0.55:
                    positive_texts.append(text)
    return positive_texts, negative_texts
示例#7
0
文件: NLP.py 项目: hx-Tang/py-web
    def comment_extract(self, commentlist):
        rank = []
        BEST = []
        WORST = []
        for comment in commentlist:  #删除长度小于30的评论
            if len(comment) < 12:
                commentlist.remove(comment)

        for comment in commentlist:
            group = (xm.sentiment(comment), comment)
            rank.append(group)

        ranklist = sorted(rank)

        num = int(len(ranklist) * 0.05)

        bestComment = ranklist[num - 1:num + 4]
        for comment in bestComment:
            BEST.append(comment[1])

        worstComment = ranklist[-num - 6:-num - 1]
        for comment in worstComment:
            WORST.append(comment[1])
        return WORST, BEST  #返回五条评分高的评价和五条比较低分的评价
示例#8
0
def test_sentiment():
    score = xmnlp.sentiment('这酒店真心不错')
    assert score > 0.5
示例#9
0
    情感计算
/ naive bayes / 
"""
print(descr)


doc = """真伤心"""
doc2 = """天气太好了,我们去钓鱼吧"""

print('\n++++++++++++++++++++++++ usage 1 ++++++++++++++++++++++++\n')

"""
 1. 使用类来进行操作

"""
from xmnlp import XmNLP 

xm = XmNLP(doc, stopword=True)
print('Text: ', doc)
print('Score: ', xm.sentiment())
print('Text: ', doc2)
print('Score: ', xm.sentiment(doc2))


print('\n++++++++++++++++++++++++ usage 2 ++++++++++++++++++++++++\n')

import xmnlp
print('Text: ', doc)
print('Score: ', xmnlp.sentiment(doc))
print('Text: ', doc2)
print('Score: ', xmnlp.sentiment(doc2))
示例#10
0
def test_sentiment():
    score = xmnlp.sentiment('这酒店真心不错哦')
    assert score[1] > 0.5
    score = xmnlp.sentiment('这酒店真心太差了')
    assert score[1] < 0.5