def setUp(self): # Seeding numpy.random.seed(2) random.seed(2) layer_dim = 64 xnmt.events.clear() ParamManager.init_param_col() self.segment_encoder_bilstm = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim) self.segment_composer = SumComposer() self.src_reader = CharFromWordTextReader(vocab=Vocab(vocab_file="examples/data/head.ja.charvocab")) self.trg_reader = PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab")) self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5) baseline = Linear(input_dim=layer_dim, output_dim=1) policy_network = Linear(input_dim=layer_dim, output_dim=2) self.poisson_prior = PoissonPrior(mu=3.3) self.eps_greedy = EpsilonGreedy(eps_prob=0.0, prior=self.poisson_prior) self.conf_penalty = ConfidencePenalty() self.policy_gradient = PolicyGradient(input_dim=layer_dim, output_dim=2, baseline=baseline, policy_network=policy_network, z_normalization=True, conf_penalty=self.conf_penalty) self.length_prior = PoissonLengthPrior(lmbd=3.3, weight=1) self.segmenting_encoder = SegmentingSeqTransducer( embed_encoder = self.segment_encoder_bilstm, segment_composer = self.segment_composer, final_transducer = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), policy_learning = self.policy_gradient, eps_greedy = self.eps_greedy, length_prior = self.length_prior, ) self.model = DefaultTranslator( src_reader=self.src_reader, trg_reader=self.trg_reader, src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), encoder=self.segmenting_encoder, attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), decoder=AutoRegressiveDecoder(input_dim=layer_dim, rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="decoder"), transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim, aux_input_dim=layer_dim), scorer=Softmax(vocab_size=100, input_dim=layer_dim), trg_embed_dim=layer_dim, bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)), ) event_trigger.set_train(True) self.layer_dim = layer_dim self.src_data = list(self.model.src_reader.read_sents("examples/data/head.ja")) self.trg_data = list(self.model.trg_reader.read_sents("examples/data/head.en")) my_batcher = batchers.TrgBatcher(batch_size=3) self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data) dy.renew_cg(immediate_compute=True, check_validity=True)
def setUp(self): # Seeding numpy.random.seed(2) random.seed(2) layer_dim = 4 xnmt.events.clear() ParamManager.init_param_col() self.segment_composer = SumComposer() self.src_reader = CharFromWordTextReader(vocab=Vocab( vocab_file="examples/data/head.ja.charvocab")) self.trg_reader = PlainTextReader(vocab=Vocab( vocab_file="examples/data/head.en.vocab")) self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5) self.segmenting_encoder = SegmentingSeqTransducer( segment_composer=self.segment_composer, final_transducer=BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), ) self.model = DefaultTranslator( src_reader=self.src_reader, trg_reader=self.trg_reader, src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), encoder=self.segmenting_encoder, attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), decoder=AutoRegressiveDecoder( input_dim=layer_dim, rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="decoder"), transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim, aux_input_dim=layer_dim), scorer=Softmax(vocab_size=100, input_dim=layer_dim), embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)), ) event_trigger.set_train(True) self.layer_dim = layer_dim self.src_data = list( self.model.src_reader.read_sents("examples/data/head.ja")) self.trg_data = list( self.model.trg_reader.read_sents("examples/data/head.en")) my_batcher = batchers.TrgBatcher(batch_size=3) self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data) dy.renew_cg(immediate_compute=True, check_validity=True)