def setUp(self): # Seeding numpy.random.seed(2) random.seed(2) layer_dim = 64 xnmt.events.clear() ParamManager.init_param_col() self.segment_encoder_bilstm = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim) self.segment_composer = SumComposer() self.src_reader = CharFromWordTextReader(vocab=Vocab(vocab_file="examples/data/head.ja.charvocab")) self.trg_reader = PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab")) self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5) baseline = Linear(input_dim=layer_dim, output_dim=1) policy_network = Linear(input_dim=layer_dim, output_dim=2) self.poisson_prior = PoissonPrior(mu=3.3) self.eps_greedy = EpsilonGreedy(eps_prob=0.0, prior=self.poisson_prior) self.conf_penalty = ConfidencePenalty() self.policy_gradient = PolicyGradient(input_dim=layer_dim, output_dim=2, baseline=baseline, policy_network=policy_network, z_normalization=True, conf_penalty=self.conf_penalty) self.length_prior = PoissonLengthPrior(lmbd=3.3, weight=1) self.segmenting_encoder = SegmentingSeqTransducer( embed_encoder = self.segment_encoder_bilstm, segment_composer = self.segment_composer, final_transducer = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim), policy_learning = self.policy_gradient, eps_greedy = self.eps_greedy, length_prior = self.length_prior, ) self.model = DefaultTranslator( src_reader=self.src_reader, trg_reader=self.trg_reader, src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), encoder=self.segmenting_encoder, attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim), trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100), decoder=AutoRegressiveDecoder(input_dim=layer_dim, rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim, decoder_input_dim=layer_dim, yaml_path="decoder"), transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim, aux_input_dim=layer_dim), scorer=Softmax(vocab_size=100, input_dim=layer_dim), trg_embed_dim=layer_dim, bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)), ) event_trigger.set_train(True) self.layer_dim = layer_dim self.src_data = list(self.model.src_reader.read_sents("examples/data/head.ja")) self.trg_data = list(self.model.trg_reader.read_sents("examples/data/head.en")) my_batcher = batchers.TrgBatcher(batch_size=3) self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data) dy.renew_cg(immediate_compute=True, check_validity=True)
def __init__(self, word_vocab=None, embedding=None, ngram_size=4, vocab_size=32000, cache_id_pool=None, cache_word_table=None, char_vocab=Ref(Path("model.src_reader.vocab")), hidden_dim=Ref("exp_global.default_layer_dim"), param_init=Ref("exp_global.param_init", default=bare(GlorotInitializer)), bias_init=Ref("exp_global.bias_init", default=bare(ZeroInitializer))): super().__init__(word_vocab, vocab_size, cache_id_pool, cache_word_table) # Attributes if word_vocab is None: self.dict_entry = vocab_size+1 else: self.dict_entry = len(word_vocab) self.char_vocab = char_vocab self.param_init = param_init self.bias_init = bias_init self.hidden_dim = hidden_dim self.word_vect = None # Word Embedding self.ngram_size = ngram_size self.embedding = self.add_serializable_component("embedding", embedding, lambda: Linear(input_dim=self.dict_entry, output_dim=hidden_dim, param_init=param_init, bias_init=bias_init))
def __init__(self, dy_model, input_dim, output_dim): self.L = Linear(input_dim, output_dim, dy_model, bias=False, param_init=LeCunUniformInitializer(), bias_init=LeCunUniformInitializer()) self.output_dim = output_dim
def __init__(self, composers, hidden_dim=Ref("exp_global.default_layer_dim"), embedding=None, param_init=Ref("exp_global.param_init", default=bare(GlorotInitializer)), bias_init=Ref("exp_global.bias_init", default=bare(ZeroInitializer))): super().__init__() assert len(composers) > 1 self.composers = composers self.embedding = self.add_serializable_component("embedding", embedding, lambda: Linear(input_dim=len(composers)*hidden_dim, output_dim=hidden_dim, param_init=param_init, bias_init=bias_init))
def __init__(self, baseline=None, evaluation_metric:metrics.SentenceLevelEvaluator = bare(metrics.FastBLEUEvaluator), search_strategy:SearchStrategy = bare(SamplingSearch), sample_length:int = 50, use_baseline:bool = False, inv_eval:bool = True, decoder_hidden_dim:int = Ref("exp_global.default_layer_dim")): self.inv_eval = inv_eval self.search_strategy = search_strategy self.evaluation_metric = evaluation_metric if use_baseline: self.baseline = self.add_serializable_component("baseline", baseline, lambda: Linear(input_dim=decoder_hidden_dim, output_dim=1)) else: self.baseline = None
def __init__(self, word_vocab=None, ngram_size=4, src_vocab=Ref(Path("model.src_reader.vocab")), hidden_dim=Ref("exp_global.default_layer_dim"), word_ngram=None, vocab_size=None): super().__init__() if word_vocab is None: word_vocab = Vocab() dict_entry = vocab_size else: dict_entry = len(word_vocab) self.dict_entry = dict_entry self.src_vocab = src_vocab self.word_vocab = word_vocab self.ngram_size = ngram_size self.word_ngram = self.add_serializable_component("word_ngram", word_ngram, lambda: Linear(input_dim=dict_entry, output_dim=hidden_dim))