def get_element_atomic_number(element_str): r""" A wrapper to ``SymbolToAtomicNumber`` function from ``xraylib``. Returns atomic number for the sybmolic element name (e.g. ``C`` or ``Fe``). Parameters ---------- element_str: str sybmolic representation of an element Returns ------- Atomic number of the element ``element_str``. If element is invalid, then the function returns 0. """ if LooseVersion(xraylib.__version__) < LooseVersion("4.0.0"): xraylib.SetErrorMessages(0) # Turn off error messages from ``xraylib`` try: val = xraylib.SymbolToAtomicNumber(element_str) except ValueError: # Imitate the behavior of xraylib 3 val = 0 return val
def parse_compound_formula(compound_formula): r""" Parses the chemical formula of a compound and returns the dictionary, which contains element name, atomic number, number of atoms and mass fraction in the compound. Parameters ---------- compound_formula: str chemical formula of the compound in the form ``FeO2``, ``CO2`` or ``Fe``. Element names must start with capital letter. Returns ------- dictionary of dictionaries, data on each element in the compound: key - sybolic element name, value - a dictionary that contains ``AtomicNumber``, ``nAtoms`` and ``massFraction`` of the element. The elements are sorted in the order of growing atomic number. Raises ------ RuntimeError is raised if compound formula cannot be parsed """ if LooseVersion(xraylib.__version__) < LooseVersion("4.0.0"): xraylib.SetErrorMessages( 0) # This is supposed to stop XRayLib from printing # internal error messages, but it doesn't work try: compound_data = xraylib.CompoundParser(compound_formula) except (SystemError, ValueError): msg = f"Invalid chemical formula '{compound_formula}' is passed, parsing failed" raise RuntimeError(msg) # Now create more manageable structure compound_dict = {} for e_an, e_mf, e_na in zip(compound_data["Elements"], compound_data["massFractions"], compound_data["nAtoms"]): e_name = xraylib.AtomicNumberToSymbol(e_an) compound_dict[e_name] = { "AtomicNumber": e_an, "nAtoms": e_na, "massFraction": e_mf } return compound_dict
#!/usr/bin/env python3 import urllib.request from io import StringIO import lxml.etree as ET import re import xraylib as xrl xrl.SetErrorMessages(0) lbl_url = "http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=" nuclide_codes = sorted(("260055", "940238", "960244", "480109", "530125", "950241", "640153", "270057", "560133", "550137")) with open("../../src/xraylib-radionuclides-internal.h", "w") as output_int, open("../../include/xraylib-radionuclides.h", "w") as output_header: header_begin = '''/* Copyright (c) 2014-2018, Tom Schoonjans All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The names of the contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY Tom Schoonjans ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Tom Schoonjans BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
**kwargs) try: import xraylib except ImportError: logger.warning('Xraylib is not installed on your machine. ' + XraylibNotInstalledError.message_post) xraylib = None if xraylib is None: # do nothing, for now pass else: xraylib.XRayInit() xraylib.SetErrorMessages(0) line_list = [ xraylib.KA1_LINE, xraylib.KA2_LINE, xraylib.KA3_LINE, xraylib.KB1_LINE, xraylib.KB2_LINE, xraylib.KB3_LINE, xraylib.KB4_LINE, xraylib.KB5_LINE, xraylib.LA1_LINE, xraylib.LA2_LINE, xraylib.LB1_LINE, xraylib.LB2_LINE, xraylib.LB3_LINE, xraylib.LB4_LINE, xraylib.LB5_LINE, xraylib.LG1_LINE, xraylib.LG2_LINE, xraylib.LG3_LINE, xraylib.LG4_LINE, xraylib.LL_LINE, xraylib.LE_LINE, xraylib.MA1_LINE, xraylib.MA2_LINE, xraylib.MB_LINE, xraylib.MG_LINE ] shell_list = [ xraylib.K_SHELL, xraylib.L1_SHELL, xraylib.L2_SHELL, xraylib.L3_SHELL, xraylib.M1_SHELL, xraylib.M2_SHELL, xraylib.M3_SHELL, xraylib.M4_SHELL, xraylib.M5_SHELL, xraylib.N1_SHELL, xraylib.N2_SHELL, xraylib.N3_SHELL,
def ABSORB(Beam_Theta, Detector_Theta, Beam_Energy, t): import xraylib xraylib.XRayInit() xraylib.SetErrorMessages(0) def GetMaterialMu( E, data ): # send in the photon energy and the dictionary holding the layer information Ele = data['Element'] Mol = data['MolFrac'] t = 0 for i in range(len(Ele)): t += xraylib.AtomicWeight(xraylib.SymbolToAtomicNumber( Ele[i])) * Mol[i] mu = 0 for i in range(len(Ele)): mu += (xraylib.CS_Total(xraylib.SymbolToAtomicNumber(Ele[i]), E) * xraylib.AtomicWeight(xraylib.SymbolToAtomicNumber(Ele[i])) * Mol[i] / t) return mu # total attenuataion w/ coherent scattering in cm2/g def Density(Material): # send a string of the compound of interest if Material == 'ZnO': return 5.6 #g/cm3 elif Material == 'CIGS': return 5.75 #g/cm3 elif Material == 'ITO': return 7.14 #g/cm3 elif Material == 'CdS': return 4.826 #g/cm3 elif Material == 'Kapton': # http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=179 return 1.42 #g/cm3 elif Material == 'SiN': return 3.44 #g/cm3 if Material == 'Mo': return 10.2 #g/cm3 def GetLayerInfo( Layer ): #send in a string to get typical layer thickness and dictionary of composition um_to_cm = 10**-4 if Layer == 'ZnO': mat = {'Element': ['Zn', 'O'], 'MolFrac': [1, 1]} t = 0.2 * um_to_cm return mat, t elif Layer == 'CdS': mat = {'Element': ['Cd', 'S'], 'MolFrac': [1, 1]} t = 0.05 * um_to_cm return mat, t elif Layer == 'Kapton': mat = { 'Element': ['H', 'C', 'N', 'O'], 'MolFrac': [0.026362, 0.691133, 0.073270, 0.209235] } # http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=179 t = 26.6 * um_to_cm #measured using profilometer return mat, t elif Layer == 'ITO': mat = { 'Element': ['In', 'Sn', 'O'], 'MolFrac': [1.8, 0.1, 2.9] } #90% In2O3 #10% SnO2 t = 0.15 * um_to_cm return mat, t elif Layer == 'Mo': mat = {'Element': ['Mo'], 'MolFrac': [1]} t = 0.7 * um_to_cm return mat, t def GetFluorescenceEnergy( Element, Beam ): # send in the element and the beam energy to get the Excited Fluorescence Energy #this will return the highest energy fluorescence photon capable of being excited by the beam Z = xraylib.SymbolToAtomicNumber(Element) F = xraylib.LineEnergy(Z, xraylib.KA1_LINE) if xraylib.EdgeEnergy(Z, xraylib.K_SHELL) > Beam: F = xraylib.LineEnergy(Z, xraylib.LA1_LINE) if xraylib.EdgeEnergy(Z, xraylib.L1_SHELL) > Beam: F = xraylib.LineEnergy(Z, xraylib.LB1_LINE) if xraylib.EdgeEnergy(Z, xraylib.L2_SHELL) > Beam: F = xraylib.LineEnergy(Z, xraylib.LB1_LINE) if xraylib.EdgeEnergy(Z, xraylib.L3_SHELL) > Beam: F = xraylib.LineEnergy(Z, xraylib.LG1_LINE) if xraylib.EdgeEnergy(Z, xraylib.M1_SHELL) > Beam: F = xraylib.LineEnergy(Z, xraylib.MA1_LINE) return F def GetIIO(Layer, Energy): ROI, t = GetLayerInfo(Layer) return np.exp(-Density(Layer) * GetMaterialMu(Energy, ROI) * t) #conversion factor um_to_cm = 10**-4 t = t * um_to_cm ##Set incident Beam Energy and Detector Geometry # Beam_Theta = 90 #degrees # Detector_Theta = 47 #degrees # Beam_Energy = 10.5 #keV # Get Layor of interest information L = 'CIGS' ROI = {'Element': ['Cu', 'In', 'Ga', 'Se'], 'MolFrac': [0.8, 0.8, 0.2, 2]} Elem = ROI['Element'] # define sublayers thickness and adjust based on measurement geometry dt = 0.01 * um_to_cm # 10 nm stepsizes steps = int(t / dt) T = np.ones((steps, 1)) * dt beam_path = T / np.sin(Beam_Theta * np.pi / 180) fluor_path = T / np.sin(Detector_Theta * np.pi / 180) # initialize variables to hold correction factors iio = [None] * steps factors = [None] * len(Elem) #print 'For a film thickness of ', t/um_to_cm, 'microns:' #loop over sublayers for self attenuation and top layer attenuation ti = time() for ind, Z in enumerate(Elem): for N in range(steps): beam_in = -Density(L) * GetMaterialMu(Beam_Energy, ROI) * beam_path[0:N] beam_out = -Density(L) * GetMaterialMu( GetFluorescenceEnergy(Z, Beam_Energy), ROI) * fluor_path[0:N] iio[N] = np.exp(np.sum(beam_in + beam_out)) factors[ind] = np.sum(iio) / N * GetIIO( 'Kapton', Beam_Energy) * GetIIO( 'Kapton', GetFluorescenceEnergy(Z, Beam_Energy)) #print 'The absorption of ', Z, 'in', L,'at beam energy', Beam_Energy,'is', round(factors[ind]*100,2) #print 'Calculation Time = ', round(time()-ti,2),'s for ', steps, 'iterations on ', ind+1,' elements' return factors