xx, niter, res, tt = my_gmres("\nGmres restart={0} maxiter={1}", M, b, tol, restart, maxiter) ecald = checker('Calderon ', A, J, xx) etrans = checker('Transmission ', J, X, xx, b) Ecald.append(ecald) Etrans.append(etrans) print('') print('STF classic', '[{}]'.format(int(M.shape[0] / 2))) print('') stf = STF(xtf) M_stf = stf.get() b_stf = stf.rhs() print(M_stf.shape) zz_stf, niter_stf, res_stf, tt_stf = my_gmres("\nGmres restart={0} maxiter={1}", M_stf, b_stf, tol, restart, maxiter) n, = zz_stf.shape n = int(n/2) sold_stf, soln_stf = zz_stf[:n], zz_stf[n:] gui = bem.GridFunction(stf.space, fun=uinc) uicoeffs = gui.coefficients fui = bem.GridFunction(stf.space, fun=dnuinc)
xx, niter, res, tt = my_gmres("\nGmres restart={0} maxiter={1}", M, b, tol, restart, maxiter) ecald = checker('Calderon ', A, J, xx) etrans = checker('Transmission ', J, X, xx, b) Ecald.append(ecald) Etrans.append(etrans) print('') print('STF classic', '[{}]'.format(int(M.shape[0] / 2))) print('') stf = STF(xtf) M_stf = stf.get() b_stf = stf.rhs() print(M_stf.shape) zz_stf, niter_stf, res_stf, tt_stf = my_gmres( "\nGmres restart={0} maxiter={1}", M_stf, b_stf, tol, restart, maxiter) n, = zz_stf.shape n = int(n / 2) sold_stf, soln_stf = zz_stf[:n], zz_stf[n:] gui = bem.GridFunction(stf.space, fun=uinc) uicoeffs = gui.coefficients fui = bem.GridFunction(stf.space, fun=dnuinc)
def neu_data(x, normal, dom_ind, result): result[0] = -1j * normal[1] * kRef * np.exp(1j * kRef * x[1]) xtf = xTF(kRef, n) xtf.setRHS(dir_data, neu_data) space = xtf.space shape = xtf.shape fd, fn = xtf.getDir(), xtf.getNeu() fdir, fneu = xtf.getGFdir(), xtf.getGFneu() STF, MTF = STF(xtf), MTF(xtf) stf, rhs_stf = STF.get(), STF.rhs() mtf, rhs_mtf = MTF.get(), MTF.rhs() x_stf = solve(stf, rhs_stf) xd_stf, xn_stf = x_stf[0:shape], x_stf[shape:] x_mtf = solve(mtf, rhs_mtf) xd_mtf, xn_mtf = x_mtf[0:shape], x_mtf[shape:2 * shape] yd_mtf, yn_mtf = x_mtf[2 * shape:3 * shape], x_mtf[3 * shape:4 * shape] print('') print('l2 norm (relative)') print(la.norm(xd_mtf - xd_stf), la.norm(xn_mtf - xn_stf)) print( la.norm(xd_mtf - yd_mtf - fd) / la.norm(xd_mtf), la.norm(-xn_mtf - yn_mtf - fn) / la.norm(xn_mtf))
def neu_data(x, normal, dom_ind, result): result[0] = -1j * normal[1] * kRef * np.exp( 1j * kRef * x[1]) xtf = xTF(kRef, n) xtf.setRHS(dir_data, neu_data) space = xtf.space shape = xtf.shape fd, fn = xtf.getDir(), xtf.getNeu() fdir, fneu = xtf.getGFdir(), xtf.getGFneu() STF, MTF = STF(xtf), MTF(xtf) stf, rhs_stf = STF.get(), STF.rhs() mtf, rhs_mtf = MTF.get(), MTF.rhs() rescaleRes = lambda res, P, rhs: res / la.norm(P(rhs)) print('\nSTF restart={0} maxiter={1}'.format(restart, maxiter), flush=True) Mat, b = stf, rhs_stf print('size: ', stf.shape, 2*shape) del res res = [] tt = time() x_stf, info = gmres(Mat, b, orthog='mgs', tol=tol,