jac=None,
                           hess=None,
                           hessp=None,
                           bounds=bounds,
                           constraints=(),
                           tol=None,
                           callback=None,
                           options=None)

        elif method == 'DE':

            ea = DE(simulator.objfunction,
                    bounds,
                    mutation=(0.5, 1.0),
                    maxiters=num)
            p, f = ea.solve(show_progress=True)

        elif method == 'GA':

            ea = Evolutionary(simulator.objfunction,
                              lower,
                              upper,
                              popsize=15,
                              max_iter=num,
                              random_state=3)
            xopt, gfit = ea.optimize(solver="cpso")

        # the simulator object stores all the data itself
        df_X = pd.DataFrame(
            simulator.X, columns=['Solar (kW)', 'Wind (kW)', 'Battery (kWh)'])
        df_Y = pd.DataFrame(
示例#2
0
    def train(self):
        
        self.death = self.load_dead(self.country)
        self.recovered = self.load_recovered(self.country)
        if self.cleanRecovered:
            zeroRecDeaths=0
        else:
            zeroRecDeaths=1
        self.data = self.load_confirmed(self.country)-zeroRecDeaths*(self.recovered+self.death)

        #optmizer solver setup and run
        # bounds=[(1e-12, .4), (1e-12, .4), (1/300,0.2),  (1/300,0.2), (1/300,0.2),\
        #         (1e-12, 0.4), (1e-12, 0.2), (1e-12, 0.2)]
        # minimizer_kwargs = dict(method="L-BFGS-B", bounds=bounds, args=(self.data, self.recovered, \
        #     self.death, self.s_0, self.e_0, self.a_0, self.i_0, self.r_0, self.d_0, self.startNCases, \
        #         self.weigthCases, self.weigthRecov))
        # x0=[0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001]
        # optimal =  basinhopping(lossOdeint,x0,minimizer_kwargs=minimizer_kwargs,
        #                 niter=200,disp=True)
        
        out=[self.data, self.recovered, \
             self.death, self.s_0, self.e_0, self.a_0, self.i_0, self.r_0, self.d_0, self.startNCases, \
                 self.weigthCases, self.weigthRecov]

        with open('./data/data.pkl','wb') as f:
            pickle.dump(out,f)

        bounds=[(1e-12, .4), (1e-12, .4), (1/300,0.2),  (1/300,0.2), (1/300,0.2),\
                (1e-12, 0.4), (1e-12, 0.2), (1e-12, 0.2)]
                
        de = DE(lossOdeint, bounds, mutation=(0.5, 1.0), maxiters=20000)
        p, f = de.solve(show_progress=True)
        
        #parameter list for optimization
        #beta, beta2, sigma, sigma2, sigma3, gamma, b, mu

        print(p)
        beta, beta2, sigma, sigma2, sigma3, gamma, b, mu = p

        new_index, extended_actual, extended_recovered, extended_death, y0, y1, y2, y3, y4, y5 \
                = self.predict(beta, beta2, sigma, sigma2, sigma3, gamma, b, mu, \
                    self.data, self.recovered, self.death, self.country, self.s_0, \
                    self.e_0, self.a_0, self.i_0, self.r_0, self.d_0)

        df = pd.DataFrame({
                    'Susceptible': y0,
                    'Exposed': y1,
                    'Asymptomatic': y2,
                    'Infected data': extended_actual,
                    'Infected': y3,
                    'Recovered': extended_recovered,
                    'Predicted Recovered': y4,
                    'Death data': extended_death,
                    'Predicted Deaths': y5},
                    index=new_index)

        plt.rc('font', size=14)
        fig, ax = plt.subplots(figsize=(15, 10))
        ax.set_title("Global Opt - SEAIR-D Model for "+self.country)
        ax.set_ylim((0, max(y0)*1.1))
        df.plot(ax=ax) #,style=['-','-','-','o','-','x','-','s','-'])
        print(f"country={self.country}, beta={beta:.8f}, beta2={beta2:.8f}, 1/sigma={1/sigma:.8f},"+\
            f" 1/sigma2={1/sigma2:.8f},1/sigma3={1/sigma3:.8f}, gamma={gamma:.8f}, b={b:.8f},"+\
            f" mu={mu:.8f}, r_0:{(beta/gamma):.8f}")

        plt.annotate('Dr. Guilherme Araujo Lima da Silva, www.ats4i.com', fontsize=10, 
        xy=(1.04, 0.1), xycoords='axes fraction',
        xytext=(0, 0), textcoords='offset points',
        ha='right',rotation=90)
        plt.annotate('Source: https://www.lewuathe.com/covid-19-dynamics-with-sir-model.html', fontsize=10, 
        xy=(1.06,0.1), xycoords='axes fraction',
        xytext=(0, 0), textcoords='offset points',
        ha='left',rotation=90)
        plt.annotate('Original SEIR-D with delay model, São Paulo, Brazil', fontsize=10, 
        xy=(1.045,0.1), xycoords='axes fraction',
        xytext=(0, 0), textcoords='offset points',
        ha='left',rotation=90)

        df.to_pickle('./data/SEAIRD_sigmaOpt_'+self.country+'.pkl')
        country=self.country
        strFile ="./results/modelSEAIRDOptGlobalOptimum"+country+".png"
        savePlot(strFile)
        plt.show()
        plt.close()

        plotX=new_index[range(0,self.predict_range)]
        plotXt=new_index[range(0,len(extended_actual))]
        fig, ax = plt.subplots(figsize=(15, 10))
        ax.set_title("Zoom SEAIR-D Model for "+self.country)
        plt.xticks(np.arange(0, self.predict_range, self.predict_range/8))
        ax.set_ylim(0,max(y3)*1.1)
        ax.plot(plotX,y3,'y-',label="Infected")
        ax.plot(plotX,y4,'c-',label="Recovered")
        ax.plot(plotX,y5,'m-',label="Deaths")
        ax.plot(plotXt,extended_actual,'o',label="Infected data")
        ax.plot(plotXt,extended_death,'x',label="Death data")
        ax.plot(plotXt,extended_recovered,'s',label="Recovered data")
        ax.legend()
       
        plt.annotate('Dr. Guilherme A. L. da Silva, www.ats4i.com', fontsize=10, 
        xy=(1.04, 0.1), xycoords='axes fraction',
        xytext=(0, 0), textcoords='offset points',
        ha='right',rotation=90)
        plt.annotate('Original SEAIR-D with delay model, São Paulo, Brazil', fontsize=10, 
        xy=(1.045,0.1), xycoords='axes fraction',
        xytext=(0, 0), textcoords='offset points',
        ha='left',rotation=90)

        strFile ="./results/ZoomModelSEAIRDOpt"+country+".png"
        savePlot(strFile)
        plt.show()
        plt.close()
        
        print(self.country+" is done!")