示例#1
0
    def __init__(self,
                 system,
                 term,
                 other_terms,
                 cart_penalty=1e-3 * angstrom):
        '''
            A class deriving from the Yaff ForceField class to implement the
            strain of a molecular geometry associated with the term defined by
            term_index.

            **Arguments**

            system
                A Yaff System instance containing all system information.

            term
                a Term instance representing the term of the perturbation
                trajectory of the current strain

            other_terms
                a list of Term instances representing all other terms for ICs
                for which a strain contribution should be added

            **Keyword Arguments**

            cart_penalty
                Magnitude of an extra term added to the strain that penalises
                a deviation of the cartesian coordinates of each atom with
                respect to the equilibrium coordinates. This penalty is equal
                to norm(R-R_eq)**2/(2.0*3*Natoms*cart_penalty**2) and prevents
                global translations, global rotations as well as rotations of
                molecular fragments far from the IC under consideration.
        '''
        self.coords0 = system.pos.copy()
        self.ndof = np.prod(self.coords0.shape)
        self.cart_penalty = cart_penalty
        self.cons_ic_atindexes = term.get_atoms()
        #construct main strain
        strain = ForcePartValence(system)
        for other in other_terms:
            if other.kind == 3: continue  #no cross terms
            strain.add_term(Harmonic(1.0, None, other.ics[0]))
        #set the rest values to the equilibrium values
        strain.dlist.forward()
        strain.iclist.forward()
        for iterm in range(strain.vlist.nv):
            vterm = strain.vlist.vtab[iterm]
            ic = strain.iclist.ictab[vterm['ic0']]
            vterm['par1'] = ic['value']
        ForceField.__init__(self, system, [strain])
        #Abuse the Chebychev1 polynomial to simply get the value of q-1 and
        #implement the contraint
        constraint = ForcePartValence(system)
        constraint.add_term(Chebychev1(-2.0, term.ics[0]))
        self.constraint = ForceField(system, [constraint])
        self.constrain_target = None
        self.constrain_value = None
        self.value = None
示例#2
0
 def satisfy(self, vterm, pars, part, system):
     if self.pars == pars:
         part_valence = ForcePartValence(system)
         part_valence.add_term(vterm)
         energy = part_valence.compute()
         ic_index = part_valence.vlist.vtab[0]['ic0']
         ic = part_valence.vlist.iclist.ictab[ic_index]['value']
         return np.abs(ic - self.rv) < self.eps
     else:
         return True
示例#3
0
 def get_hessian_contrib(self, index, fc=None):
     '''
         Get the contribution to the covalent hessian of term with given
         index (and its slaves). If fc is given, set the fc of the master
         and its slave to the given fc.
     '''
     val = ForcePartValence(self.system)
     kind = self.vlist.vtab[index]['kind']
     masterslaves = [index] + self.terms[index].slaves
     if kind == 4:  #Cosine
         m, k, rv = self.get_params(index)
         if fc is not None: k = fc
         for jterm in masterslaves:
             ics = self.terms[jterm].ics
             args = (m, k, rv) + tuple(ics)
             val.add_term(Cosine(*args))
     elif kind == 3:  #cross
         k, rv0, rv1 = self.get_params(index)
         if fc is not None: k = fc
         for jterm in masterslaves:
             ics = self.terms[jterm].ics
             args = (k, rv0, rv1) + tuple(ics)
             val.add_term(Cross(*args))
     elif kind == 1:  #Polyfour
         a0, a1, a2, a3 = list(self.get_params(index))
         if fc is not None:
             a3 = 2.0 * fc
             a1 = -4.0 * fc * np.cos(a0)**2
         for jterm in masterslaves:
             ics = self.terms[jterm].ics
             args = ([0.0, a1, 0.0, a3], ) + tuple(ics)
             val.add_term(PolyFour(*args))
     elif kind == 0:  #Harmonic:
         k, rv = self.get_params(index)
         if fc is not None: k = fc
         for jterm in masterslaves:
             ics = self.terms[jterm].ics
             args = (k, rv) + tuple(ics)
             val.add_term(Harmonic(*args))
     else:
         raise ValueError('Term kind %i not supported' % kind)
     ff = ForceField(self.system, [val])
     hcov = estimate_cart_hessian(ff)
     return hcov
示例#4
0
    def __init__(self,
                 system,
                 cons_ic,
                 cons_ic_atindexes,
                 ics,
                 cart_penalty=1e-3 * angstrom):
        '''
            A class deriving from the Yaff ForceField class to implement the
            strain of a molecular geometry associated with the term defined by
            term_index.

            **Arguments**

            system
                A Yaff System instance containing all system information.

            cons_ic
                An instance of Yaff Internal Coordinate representing the
                constrained term in the strain.

            cons_ic_atindexes
                A list of the atoms involved in the constrained IC. This is
                required for the implementation of the cartesian penalty. In
                principle this could be extracted from the information stored
                in cons_ic, but this is the lazy solution.

            ics
                A list of Yaff Internal Coordinate instances for which the
                strain needs to be minimized.

            cart_penalty
                Magnitude of an extra term added to the strain that penalises
                a deviation of the cartesian coordinates of each atom with
                respect to the equilibrium coordinates. This penalty is equal
                to norm(R-R_eq)**2/(2.0*3*Natoms*cart_penalty**2) and prevents
                global translations, global rotations as well as rotations of
                molecular fragments far from the IC under consideration.
        '''
        self.coords0 = system.pos.copy()
        self.ndof = np.prod(self.coords0.shape)
        self.cart_penalty = cart_penalty
        self.cons_ic_atindexes = cons_ic_atindexes
        part = ForcePartValence(system)
        for ic in ics:
            part.add_term(Harmonic(1.0, None, ic))
        #set the rest values to the equilibrium values
        part.dlist.forward()
        part.iclist.forward()
        for iterm in xrange(part.vlist.nv):
            term = part.vlist.vtab[iterm]
            ic = part.iclist.ictab[term['ic0']]
            term['par1'] = ic['value']
        ForceField.__init__(self, system, [part])
        #Abuse the Chebychev1 polynomial to simply get the value of q-1 and
        #implement the contraint
        part = ForcePartValence(system)
        part.add_term(Chebychev1(-2.0, cons_ic))
        self.constraint = ForceField(system, [part])
        self.constrain_target = None
        self.constrain_value = None
        self.value = None