示例#1
0
def andreas_power_features(eeg_signal, fs=128):
    for i in (np.arange(eeg_signal.shape[0] / 100) + 1):
        if i == 1:
            df = yasa.bandpower(eeg_signal[0:int(100 * i), :], sf=fs)
        else:
            df = df.append(
                yasa.bandpower(eeg_signal[int(100 * (i - 1)):int(100 * i), :],
                               sf=fs))

    df = df.set_index(np.arange(eeg_signal.shape[0]))
    df = df.drop(columns=["FreqRes", "Relative"], axis=1)
    return np.array(df)
    def __calculateRelativeFrequencyBands(self, epochSeries : pd.Series) -> pd.Series:
        ''' Calculates the frequecny bands from the given time series (epochSeries) and returns a series of dataframes with the frequency bands

        The Dataframe looks then like this: (depding on the given frequency bands)

        Channel    | Delta | Theta  | Alpha | ...
        --------------------------------------
        channel_1  |  0.53 |  0.323 | ...
        channel_2  |  0.53 |  0.323 | ...
         ....      |  .... | 

        Info for the bandpower function: https://raphaelvallat.com/yasa/build/html/generated/yasa.bandpower.html
        '''
        epochFeatureSeries = []

        for epoch_df in epochSeries:
            
            dataNpArray = self.__convertDataFrameToNumpyArray(epoch_df)

            # calculate the bandpower for this epoch 
            bandpower_df = yasa.bandpower(data=dataNpArray, 
                                        sf=self.samplingRate,
                                        ch_names=epoch_df.columns,
                                        win_sec=4, #  e.g. for a lower frequency of interest of 0.5 Hz, the window length should be at least 2 * 1 / 0.5 = 4 seconds
                                        relative=True, # then the bandpower is already between 0 and 1
                                        bands=self.frequencyBands,
                                        kwargs_welch=self.kwargsWelch) # e.g. (0.5, 4, ‘Delta’)

            
            epochFeatureSeries.append(bandpower_df)
        
        
        return epochFeatureSeries
示例#3
0
 def run(self, data: List[DataFrame], **kwargs) -> List[DataFrame]:
     data = [d.swapaxes('index', 'columns') for d in data]
     data = [
         bandpower(d.to_numpy(), kwargs['lowest_frequency'], d.index)
         for d in data
     ]
     data = [d.loc[:, self.bands] for d in data]
     return data
示例#4
0
def obtain_spectral_features(data, win=4.0, sf=250):
    win_sec = win
    data = data.squeeze() * 1e6  #Go back to volts
    bandpower = yasa.bandpower(data,
                               sf=sf,
                               ch_names=EEG_channels,
                               win_sec=win_sec,
                               bands=[(0.5, 4, 'Delta'), (4, 8, 'Theta'),
                                      (8, 12, 'Alpha'), (12, 30, 'Beta'),
                                      (30, 50, 'Gamma')])
    return bandpower[bands]
示例#5
0
def compute_frequency_features(signal,
                               fs,
                               ch_names=['EEG', 'EEG(sec)'],
                               normalize_signal=True):
    if normalize_signal:
        sscaler = StandardScaler()
        num_ch = signal.shape[0]
        signal = np.reshape(sscaler.fit_transform(np.reshape(signal, (-1, 1))),
                            (num_ch, -1))
    return bandpower(signal, sf=fs, ch_names=ch_names,
                     relative=True)[  # 'Gamma' removed
                         ['Delta', 'Theta', 'Alpha', 'Beta']].mean().values
示例#6
0
def bandpower(df: pd.DataFrame) -> pd.DataFrame:
    df["bandpower"] = [[] for _ in range(len(df))]
    for i, row in df.iterrows():
        timestamps, *ch = zip(*row["raw_data"])
        data = np.array(ch).T
        rawarray = raw_to_mne(data)
        df_power = yasa.bandpower(rawarray)
        df_power = df_power.reset_index()[
            ["Chan", "Delta", "Theta", "Alpha", "Sigma", "Beta", "Gamma"]
        ]
        df.at[i, "bandpower"] = df_power.values.tolist()

    return df
    def make_prediction(self, chunk):

        ###################
        ## Get new samples#
        ###################
        chunk = np.array(chunk) #Should be of size (125,30)
        # Roll old data to make space for the new chunk
        self.dataBuffer = np.roll(self.dataBuffer, -self.chunk_size, axis=0)  # Buffer Shape (Time*SF, channels)
        # Add chunk in the last 125 rows of the data buffer. 250 samples ==> 1 second.
        self.dataBuffer[-self.chunk_size:, :] = chunk[:, :] # Add chunk in the last 125 rows. 250 samples ==> 1 second.

        ######################
        ##Calculate Features##
        ######################
        # Check that data is in the correct range
        # check_units = [0.2 < abs(self.dataBuffer[-2*self.chunk_size:, 2].min()) < 800,
        #                 1 < abs(self.dataBuffer[-2*self.chunk_size:, 7].max()) < 800,
        #                 0.2 < abs(self.dataBuffer[-2*self.chunk_size:, 15].min()) < 800]
        # assert all(check_units), \
        #     "Check the units of the data that is about to be process. " \
        #     "Data should be given as uv to the get bandpower coefficients function" \
        #     + str(check_units)

        # Get bandPower coefficients
        win_sec = 0.95
        bandpower = yasa.bandpower(self.dataBuffer[-2*self.chunk_size:, :].transpose(),
                                   sf=self.sf, ch_names=self.EEG_CHANNELS, win_sec=win_sec,
                                   bands=[(4, 8, 'Theta'), (8, 12, 'Alpha'), (12, 40, 'Beta')])
        bandpower = bandpower[self.POWER_BANDS].transpose()
        bandpower = bandpower.values.reshape(1, -1)

        # Add feature to vector to LSTM sequence and normalize sequence for prediction.
        self.sequenceForPrediction = np.roll(self.sequenceForPrediction, -1, axis=1) #Sequence shape (1, timesteps, #features)
        self.sequenceForPrediction[0, -1, :] = bandpower  # Set new data point in last row

        #normalize sequence
        normalSequence = (self.sequenceForPrediction - self.global_mean)/self.global_std

        prediction = self.predictionModel.predict(normalSequence)
        prediction = prediction[0, 1]

        # predicted_label = 1 if prediction > 0.5 else 0

        # print("prediction scores:", prediction, "label: ", predicted_label)
        self.lslSender.record_event(prediction)

        return prediction
示例#8
0
            # print(timestamps, chunk)
            chunk = np.array(chunk)
            # print(chunk.shape)
            endTime=time.time()
            # print(endTime - beginTime)
            beginTime = time.time()

            #Roll old data to make space for the new chunk
            dataBuffer = np.roll(dataBuffer, -500, axis=0) #Buffer Shape (Time*SF, channels)
            chunk = np.array(chunk) #Add chunk in the last 250 rows. 250 samples ==> 1 second.
            dataBuffer[-500:, :] = chunk[:,:]*1e-6 #Add chunk in the last 250 rows. 250 samples ==> 1 second.

            # Get bandPower coefficients
            win_sec = 2 * 0.95
            bandpower = yasa.bandpower(dataBuffer[-500:, :].transpose(), sf=sf, ch_names=EEG_channels, win_sec=win_sec,
                                bands=[(0.5, 4, 'Delta'), (4, 8, 'Theta'), (8, 12, 'Alpha'),
                                       (12, 30, 'Beta'), (30, 50, 'Gamma')])

            # Reshape coefficients into a single row vector
            bandpower = bandpower[Power_coefficients].values.reshape(1, -1)
            #Old
            #########################################
            # win = int(1.8 * sf)  # Window size for Welch estimation.
            # freqs, psd = welch(dataBuffer[-500:, :], sf, nperseg=win, axis=0) #Calculate PSD on the last two seconds of data.
            #
            # #Calculate the bandpower on 3-D PSD array
            # bandpower = yasa.bandpower_from_psd_ndarray(psd.transpose(), freqs, bands) #Bandpower shape ==> (#bands, #OfChannels)
            # bandpower = bandpower.reshape(-1)
            ##########################################

            #Add feature to vector to LSTM sequence and normalize sequence for prediction.
    feature = [path + i for i in os.listdir(path)]
    try:
        os.mkdir(file)
    except:
        pass
    for i, ad in enumerate(feature):
        try:
            sf = 128
            data = pd.read_csv(ad)
            data = data / 10

            data = data.transpose()

            # freqs, psd = signal.welch(adhd_data, sf, nperseg=win)
            a = yasa.bandpower(data.values,
                               sf=sf,
                               ch_names=sensor,
                               relative=False)
            print(a)
            #a.loc[:, :'Gamma'].to_csv(f'./{file}/{who}_{i}.csv')
            """
            plt.bar(x=a.loc['T7', :'Gamma'].index, height=a.loc['T7', :'Gamma'])
            plt.show()
            plt.bar(x=c.loc['T7', :'Gamma'].index, height=a.loc['T7', :'Gamma'])
            plt.show()
            """

        except FileNotFoundError:
            pass
        else:
            pass
        """
示例#10
0
def compute_features_stage(raw,
                           hypno,
                           max_freq=35,
                           spindles_params=dict(),
                           sw_params=dict()):
    """Calculate a set of features for each sleep stage from PSG data.

    Features are calculated for N2, N3, NREM (= N2 + N3) and REM sleep.

    Parameters
    ----------
    raw : :py:class:`mne.io.BaseRaw`
        An MNE Raw instance.
    hypno : array_like
        Sleep stage (hypnogram). The hypnogram must have the exact same
        number of samples as ``data``. To upsample your hypnogram,
        please refer to :py:func:`yasa.hypno_upsample_to_data`.

        .. note::
            The default hypnogram format in YASA is a 1D integer
            vector where:

            - -2 = Unscored
            - -1 = Artefact / Movement
            - 0 = Wake
            - 1 = N1 sleep
            - 2 = N2 sleep
            - 3 = N3 sleep
            - 4 = REM sleep

    max_freq : int
        Maximum frequency. This will be used to bandpass-filter the data and
        to calculate 1 Hz bins bandpower.
    kwargs_sp : dict
        Optional keywords arguments that are passed to the
        :py:func:`yasa.spindles_detect` function. We strongly recommend
        adapting the thresholds to your population (e.g. more liberal for
        older adults).
    kwargs_sw : dict
        Optional keywords arguments that are passed to the
        :py:func:`yasa.sw_detect` function. We strongly recommend
        adapting the thresholds to your population (e.g. more liberal for
        older adults).
    """
    # #########################################################################
    # 2) PREPROCESSING
    # #########################################################################

    # Safety checks
    assert isinstance(max_freq, int), "`max_freq` must be int."
    assert isinstance(raw, mne.io.BaseRaw), "`raw` must be a MNE Raw object."
    assert isinstance(spindles_params, dict)
    assert isinstance(sw_params, dict)

    # Define 1 Hz bins frequency bands for bandpower
    # Similar to [(0.5, 1, "0.5-1"), (1, 2, "1-2"), ..., (34, 35, "34-35")]
    bands = []
    freqs = [0.5] + list(range(1, max_freq + 1))
    for i, b in enumerate(freqs[:-1]):
        bands.append(tuple((b, freqs[i + 1], "%s-%s" % (b, freqs[i + 1]))))
    # Append traditional bands
    bands_classic = [(0.5, 1, 'slowdelta'), (1, 4, 'fastdelta'),
                     (0.5, 4, 'delta'), (4, 8, 'theta'), (8, 12, 'alpha'),
                     (12, 16, 'sigma'), (16, 30, 'beta'),
                     (30, max_freq, 'gamma')]
    bands = bands_classic + bands

    # Find min and maximum frequencies. These will be used for bandpass-filter
    # and 1/f adjustement of bandpower. l_freq = 0.5 / h_freq = 35 Hz.
    all_freqs_sorted = np.sort(
        np.unique([b[0] for b in bands] + [b[1] for b in bands]))
    l_freq = all_freqs_sorted[0]
    h_freq = all_freqs_sorted[-1]

    # Mapping dictionnary integer to string for sleep stages (2 --> N2)
    stage_mapping = {
        -2: 'Unscored',
        -1: 'Artefact',
        0: 'Wake',
        1: 'N1',
        2: 'N2',
        3: 'N3',
        4: 'REM',
        6: 'NREM',
        7: 'WN'  # Whole night = N2 + N3 + REM
    }

    # Hypnogram check + calculate NREM hypnogram
    hypno = np.asarray(hypno, dtype=int)
    assert hypno.ndim == 1, 'Hypno must be one dimensional.'
    unique_hypno = np.unique(hypno)
    logger.info('Number of unique values in hypno = %i', unique_hypno.size)

    # IMPORTANT: NREM is defined as N2 + N3, excluding N1 sleep.
    hypno_NREM = pd.Series(hypno).replace({2: 6, 3: 6}).to_numpy()
    minutes_of_NREM = (hypno_NREM == 6).sum() / (60 * raw.info['sfreq'])

    # WN = Whole night = N2 + N3 + REM (excluding N1)
    hypno_WN = pd.Series(hypno).replace({2: 7, 3: 7, 4: 7}).to_numpy()
    # minutes_of_WN = (hypno_WN == 7).sum() / (60 * raw.info['sfreq'])

    # Keep only EEG channels
    raw_eeg = raw.pick_types(eeg=True)

    # Remove suffix from channels: C4-M1 --> C4
    chan_nosuffix = [c.split('-')[0] for c in raw_eeg.ch_names]
    raw_eeg.rename_channels(dict(zip(raw_eeg.ch_names, chan_nosuffix)))
    # Rename P7/T5 --> P7
    chan_noslash = [c.split('/')[0] for c in raw_eeg.ch_names]
    raw_eeg.rename_channels(dict(zip(raw_eeg.ch_names, chan_noslash)))
    chan = raw_eeg.ch_names

    # Resample to 100 Hz and bandpass-filter
    raw_eeg.resample(100, verbose=False)
    raw_eeg.filter(l_freq, h_freq, verbose=False)

    # Extract data and sf
    data = raw_eeg.get_data() * 1e6  # Scale from Volts (MNE default) to uV
    sf = raw_eeg.info['sfreq']
    assert data.ndim == 2, 'data must be 2D (chan, times).'
    assert hypno.size == data.shape[1], 'Hypno must have same size as data.'

    # #########################################################################
    # 2) SPECTRAL POWER
    # #########################################################################

    print("  ..calculating spectral powers")

    # 2.1) 1Hz bins, N2 / N3 / REM
    # win_sec = 4 sec = 0.25 Hz freq resolution
    df_bp = yasa.bandpower(raw_eeg,
                           hypno=hypno,
                           bands=bands,
                           win_sec=4,
                           include=(2, 3, 4))
    # Same for NREM / WN
    df_bp_NREM = yasa.bandpower(raw_eeg,
                                hypno=hypno_NREM,
                                bands=bands,
                                include=6)
    df_bp_WN = yasa.bandpower(raw_eeg, hypno=hypno_WN, bands=bands, include=7)
    df_bp = df_bp.append(df_bp_NREM).append(df_bp_WN)
    df_bp.drop(columns=['TotalAbsPow', 'FreqRes', 'Relative'], inplace=True)
    df_bp = df_bp.add_prefix('bp_').reset_index()
    # Replace 2 --> N2
    df_bp['Stage'] = df_bp['Stage'].map(stage_mapping)
    # Assert that there are no negative values (see below issue on 1/f)
    assert not (df_bp._get_numeric_data() < 0).any().any()
    df_bp.columns = df_bp.columns.str.lower()

    # 2.2) Same but after adjusting for 1/F (VERY SLOW!)
    # This is based on the IRASA method described in Wen & Liu 2016.
    df_bp_1f = []

    for stage in [2, 3, 4, 6, 7]:
        if stage == 6:
            # Use hypno_NREM
            data_stage = data[:, hypno_NREM == stage]
        elif stage == 7:
            # Use hypno_WN
            data_stage = data[:, hypno_WN == stage]
        else:
            data_stage = data[:, hypno == stage]
        # Skip if stage is not present in data
        if data_stage.shape[-1] == 0:
            continue
        # Calculate aperiodic / oscillatory PSD + slope
        freqs, _, psd_osc, fit_params = yasa.irasa(data_stage,
                                                   sf,
                                                   ch_names=chan,
                                                   band=(l_freq, h_freq),
                                                   win_sec=4)
        # Make sure that we don't have any negative values in PSD
        # See https://github.com/raphaelvallat/yasa/issues/29
        psd_osc = psd_osc - psd_osc.min(axis=-1, keepdims=True)
        # Calculate bandpower
        bp = yasa.bandpower_from_psd(psd_osc,
                                     freqs,
                                     ch_names=chan,
                                     bands=bands)
        # Add 1/f slope to dataframe and sleep stage
        bp['1f_slope'] = np.abs(fit_params['Slope'].to_numpy())
        bp.insert(loc=0, column="Stage", value=stage_mapping[stage])
        df_bp_1f.append(bp)

    # Convert to a dataframe
    df_bp_1f = pd.concat(df_bp_1f)
    # Remove the TotalAbsPower column, incorrect because of negative values
    df_bp_1f.drop(columns=['TotalAbsPow', 'FreqRes', 'Relative'], inplace=True)
    df_bp_1f.columns = [
        c if c in ['Stage', 'Chan', '1f_slope'] else 'bp_adj_' + c
        for c in df_bp_1f.columns
    ]
    assert not (df_bp_1f._get_numeric_data() < 0).any().any()
    df_bp_1f.columns = df_bp_1f.columns.str.lower()

    # #########################################################################
    # 3) SPINDLES DETECTION // WORK IN PROGRESS
    # #########################################################################

    # print("  ..detecting sleep spindles")

    # spindles_params.update(include=(2, 3))

    # # Detect spindles in N2 and N3
    # # Thresholds have to be tuned with visual scoring of a subset of data
    # # https://raphaelvallat.com/yasa/build/html/generated/yasa.spindles_detect.html
    # sp = yasa.spindles_detect(raw_eeg, hypno=hypno, **spindles_params)

    # df_sp = sp.summary(grp_chan=True, grp_stage=True).reset_index()
    # df_sp['Stage'] = df_sp['Stage'].map(stage_mapping)

    # # Aggregate using the mean (adding NREM = N2 + N3)
    # df_sp = sp.summary(grp_chan=True, grp_stage=True)
    # df_sp_NREM = sp.summary(grp_chan=True).reset_index()
    # df_sp_NREM['Stage'] = 6
    # df_sp_NREM.set_index(['Stage', 'Channel'], inplace=True)
    # density_NREM = df_sp_NREM['Count'] / minutes_of_NREM
    # df_sp_NREM.insert(loc=1, column='Density',
    #                   value=density_NREM.to_numpy())

    # df_sp = df_sp.append(df_sp_NREM)
    # df_sp.columns = ['sp_' + c if c in ['Count', 'Density'] else
    #                  'sp_mean_' + c for c in df_sp.columns]

    # # Prepare to export
    # df_sp.reset_index(inplace=True)
    # df_sp['Stage'] = df_sp['Stage'].map(stage_mapping)
    # df_sp.columns = df_sp.columns.str.lower()
    # df_sp.rename(columns={'channel': 'chan'}, inplace=True)

    # #########################################################################
    # 4) SLOW-WAVES DETECTION & SW-Sigma COUPLING
    # #########################################################################

    print("  ..detecting slow-waves")

    # Make sure we calculate coupling
    sw_params.update(coupling=True)

    # Detect slow-waves
    # Option 1: Using absolute thresholds
    # IMPORTANT: THRESHOLDS MUST BE ADJUSTED ACCORDING TO AGE!
    sw = yasa.sw_detect(raw_eeg, hypno=hypno, **sw_params)

    # Aggregate using the mean per channel x stage
    df_sw = sw.summary(grp_chan=True, grp_stage=True)
    # Add NREM
    df_sw_NREM = sw.summary(grp_chan=True).reset_index()
    df_sw_NREM['Stage'] = 6
    df_sw_NREM.set_index(['Stage', 'Channel'], inplace=True)
    density_NREM = df_sw_NREM['Count'] / minutes_of_NREM
    df_sw_NREM.insert(loc=1, column='Density', value=density_NREM.to_numpy())
    df_sw = df_sw.append(df_sw_NREM)[[
        'Count', 'Density', 'Duration', 'PTP', 'Frequency', 'ndPAC'
    ]]
    df_sw.columns = [
        'sw_' + c if c in ['Count', 'Density'] else 'sw_mean_' + c
        for c in df_sw.columns
    ]

    # Aggregate using the coefficient of variation
    # The CV is a normalized (unitless) standard deviation. Lower
    # values mean that slow-waves are more similar to each other.
    # We keep only spefific columns of interest. Not duration because it
    # is highly correlated with frequency (r=0.99).
    df_sw_cv = sw.summary(grp_chan=True,
                          grp_stage=True,
                          aggfunc=sp_stats.variation)[[
                              'PTP', 'Frequency', 'ndPAC'
                          ]]

    # Add NREM
    df_sw_cv_NREM = sw.summary(grp_chan=True,
                               grp_stage=False,
                               aggfunc=sp_stats.variation)[[
                                   'PTP', 'Frequency', 'ndPAC'
                               ]].reset_index()
    df_sw_cv_NREM['Stage'] = 6
    df_sw_cv_NREM.set_index(['Stage', 'Channel'], inplace=True)
    df_sw_cv = df_sw_cv.append(df_sw_cv_NREM)
    df_sw_cv.columns = ['sw_cv_' + c for c in df_sw_cv.columns]

    # Combine the mean and CV into a single dataframe
    df_sw = df_sw.join(df_sw_cv).reset_index()
    df_sw['Stage'] = df_sw['Stage'].map(stage_mapping)
    df_sw.columns = df_sw.columns.str.lower()
    df_sw.rename(columns={'channel': 'chan'}, inplace=True)

    # #########################################################################
    # 5) ENTROPY & FRACTAL DIMENSION
    # #########################################################################

    print("  ..calculating entropy measures")

    # Filter data in the delta band and calculate envelope for CVE
    data_delta = mne.filter.filter_data(data,
                                        sfreq=sf,
                                        l_freq=0.5,
                                        h_freq=4,
                                        l_trans_bandwidth=0.2,
                                        h_trans_bandwidth=0.2,
                                        verbose=False)
    env_delta = np.abs(sp_sig.hilbert(data_delta))

    # Initialize dataframe
    idx_ent = pd.MultiIndex.from_product([[2, 3, 4, 6, 7], chan],
                                         names=['stage', 'chan'])
    df_ent = pd.DataFrame(index=idx_ent)

    for stage in [2, 3, 4, 6, 7]:
        if stage == 6:
            # Use hypno_NREM
            data_stage = data[:, hypno_NREM == stage]
            env_stage_delta = env_delta[:, hypno_NREM == stage]
        elif stage == 7:
            # Use hypno_WN
            data_stage = data[:, hypno_WN == stage]
            env_stage_delta = env_delta[:, hypno_WN == stage]
        else:
            data_stage = data[:, hypno == stage]
            env_stage_delta = env_delta[:, hypno == stage]
        # Skip if stage is not present in data
        if data_stage.shape[-1] == 0:
            continue

        # Entropy and fractal dimension (FD)
        # See review here: https://pubmed.ncbi.nlm.nih.gov/33286013/
        # These are calculated on the broadband signal.
        # - DFA not implemented because it is dependent on data length.
        # - Spectral entropy not implemented because the data is not
        #   continuous (segmented by stage).
        # - Sample / app entropy not implemented because it is too slow to
        #   calculate.
        from numpy import apply_along_axis as aal
        df_ent.loc[stage, 'ent_svd'] = aal(ant.svd_entropy,
                                           axis=1,
                                           arr=data_stage,
                                           normalize=True)
        df_ent.loc[stage, 'ent_perm'] = aal(ant.perm_entropy,
                                            axis=1,
                                            arr=data_stage,
                                            normalize=True)
        df_ent.loc[stage, 'ent_higuchi'] = aal(ant.higuchi_fd,
                                               axis=1,
                                               arr=data_stage)

        # We also add the coefficient of variation of the delta envelope
        # (CVE), a measure of "slow-wave stability".
        # See Diaz et al 2018, NeuroImage / Park et al 2021, Sci. Rep.
        # Lower values = more stable slow-waves (= more sinusoidal)
        denom = np.sqrt(4 / np.pi - 1)  # approx 0.5227
        cve = sp_stats.variation(env_stage_delta, axis=1) / denom
        df_ent.loc[stage, 'ent_cve_delta'] = cve

    df_ent = df_ent.dropna(how="all").reset_index()
    df_ent['stage'] = df_ent['stage'].map(stage_mapping)

    # #########################################################################
    # 5) MERGE ALL DATAFRAMES
    # #########################################################################

    df = (
        df_bp.merge(df_bp_1f, how='outer')
        # .merge(df_sp, how='outer')
        .merge(df_sw, how='outer').merge(df_ent, how='outer'))

    return df.set_index(['stage', 'chan'])