'/rawDataSample.bin')) path_to_filtered_data = (os.path.expanduser('~/data/ucl-neuropixel' '/tmp/filtered.bin')) # create batch processor for the data bp = BatchProcessor(path_to_neuropixel_data, dtype='int16', n_channels=385, data_format='wide', max_memory='500MB') # appply a single channel transformation, each batch will be all observations # from one channel, results are saved to disk bp.single_channel_apply(butterworth, mode='disk', output_path=path_to_filtered_data, low_freq=300, high_factor=0.1, order=3, sampling_freq=30000, channels=[0, 1, 2]) # let's visualize the results raw = RecordingsReader(path_to_neuropixel_data, dtype='int16', n_channels=385, data_format='wide') # you do not need to specify the format since single_channel_apply # saves a yaml file with such parameters filtered = RecordingsReader(path_to_filtered_data) fig, (ax1, ax2) = plt.subplots(2, 1) ax1.plot(raw[:2000, 0]) ax2.plot(filtered[:2000, 0])
x_long = dummy(big_long[(slice(0, 2000000, None), 1)]) big_long[(slice(0, 2000000, None), 1)] = x_long big_long.flush() x_long = dummy(big_long[:, 1]) big_long[:, 1] = x_long bp_long = BatchProcessor(path_to_long, dtype='int64', n_channels=50, data_format='long', max_memory='500MB') path = bp_long.single_channel_apply(dummy, path_to_out) out = RecordingsReader(path) out bp_wide = BatchProcessor(path_to_wide, dtype='int64', n_channels=50, data_format='wide', max_memory='500MB') path = bp_wide.single_channel_apply(dummy, path_to_out) out = RecordingsReader(path) out path = bp_long.multi_channel_apply(dummy, path_to_out)
'/rawDataSample.bin')) path_to_filtered_data = (os.path.expanduser('~/data/ucl-neuropixel' '/tmp/filtered.bin')) # create batch processor for the data bp = BatchProcessor(path_to_neuropixel_data, dtype='int16', n_channels=385, data_format='wide', max_memory='500MB') # appply a single channel transformation, each batch will be all observations # from one channel bp.single_channel_apply(butterworth, path_to_filtered_data, low_freq=300, high_factor=0.1, order=3, sampling_freq=30000) # let's visualize the results raw = RecordingsReader(path_to_neuropixel_data, dtype='int16', n_channels=385, data_format='wide') # you do not need to specify the format since single_channel_apply # saves a yaml file with such parameters filtered = RecordingsReader(path_to_filtered_data) fig, (ax1, ax2) = plt.subplots(2, 1) ax1.plot(raw[:2000, 0])