示例#1
0
 def test_kendalltau_1D(self):
     """
     Assert that a 2D matrix is required as input
     """
     with pytest.raises(IndexError, match="tuple index out of range"):
         X = 0.1 * np.arange(10)
         kendalltau(X)
示例#2
0
    def test_kendalltau(self):
        """
        Test results returned match expectations
        """
        X, _ = load_energy(return_dataset=True).to_numpy()

        expected = np.array([
            [1.0, -1.0, -0.2724275, -0.7361443, 0.7385489, 0.0, 0.0, 0.0],
            [-1.0, 1.0, 0.2724275, 0.7361443, -0.7385489, 0.0, 0.0, 0.0],
            [
                -0.2724275, 0.2724275, 1.0, -0.15192004, 0.19528337, 0.0, 0.0,
                0.0
            ],
            [
                -0.73614431, 0.73614431, -0.15192004, 1.0, -0.87518995, 0.0,
                0.0, 0.0
            ],
            [
                0.73854895, -0.73854895, 0.19528337, -0.87518995, 1.0, 0.0,
                0.0, 0.0
            ],
            [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.15430335],
            [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.15430335, 1.0],
        ])
        actual = kendalltau(X)
        npt.assert_almost_equal(expected, actual)
示例#3
0
    def test_kendalltau_shape(self):
        """
        Assert that a square correlation matrix is returned
        """
        corr = kendalltau(self.dataset)
        assert corr.shape[0] == corr.shape[1]

        for (i, j), val in np.ndenumerate(corr):
            assert corr[j][i] == pytest.approx(val)
示例#4
0
    def test_kendalltau_shape(self):
        """
        Assert that a square correlation matrix is returned
        """
        X, _ = load_energy(return_dataset=True).to_numpy()
        corr = kendalltau(X)
        assert corr.shape[0] == corr.shape[1]

        for (i, j), val in np.ndenumerate(corr):
            assert corr[j][i] == pytest.approx(val)
示例#5
0
 def test_kendalltau(self):
     """
     Test results returned match expectations
     """
     expected = np.array([
         [
             1.0,
             -0.68,
             -0.57454545,
             0.49858586,
             0.07555556,
             -0.05858586,
             0.02387848,
             0.11357219,
         ],
         [
             -0.68,
             1.0,
             0.58666667,
             -0.69090909,
             -0.22262626,
             -0.17171717,
             -0.05059964,
             -0.12397575,
         ],
         [
             -0.57454545,
             0.58666667,
             1.0,
             -0.61050505,
             0.18909091,
             0.07515152,
             0.00341121,
             -0.0638663,
         ],
         [
             0.49858586,
             -0.69090909,
             -0.61050505,
             1.0,
             0.11070707,
             0.3030303,
             0.03013237,
             0.07542581,
         ],
         [
             0.07555556,
             -0.22262626,
             0.18909091,
             0.11070707,
             1.0,
             0.4610101,
             0.01648752,
             0.05982047,
         ],
         [
             -0.05858586,
             -0.17171717,
             0.07515152,
             0.3030303,
             0.4610101,
             1.0,
             0.03695479,
             -0.02398599,
         ],
         [
             0.02387848,
             -0.05059964,
             0.00341121,
             0.03013237,
             0.01648752,
             0.03695479,
             1.0,
             0.18298883,
         ],
         [
             0.11357219,
             -0.12397575,
             -0.0638663,
             0.07542581,
             0.05982047,
             -0.02398599,
             0.18298883,
             1.0,
         ],
     ])
     npt.assert_almost_equal(expected, kendalltau(self.dataset))