示例#1
0
 def test_raster_should_get_array_block_one_band(self):
     filename = 'data/RGB.byte.tif'
     raster = Raster(filename)
     array = raster.array_from_bands(2, block_win=(256, 256, 128, 128))
     self.assertEqual(array.ndim, 2)
     self.assertEqual(array.shape, (128, 128))
     self.assertEqual(array.dtype, 'UInt8')
示例#2
0
 def test_raster_should_get_array_one_band(self):
     filename = 'data/RGB.byte.tif'
     raster = Raster(filename)
     array = raster.array_from_bands(1)
     self.assertEqual(array.ndim, 2)
     self.assertEqual(array.shape, (718, 791))
     self.assertEqual(array.dtype, 'UInt8')
示例#3
0
 def test_raster_should_get_array_block(self):
     filename = 'data/RGB.byte.tif'
     raster = Raster(filename)
     array = raster.array_from_bands(block_win=(256, 256, 300, 300))
     self.assertEqual(array.ndim, 3)
     self.assertEqual(array.shape, (300, 300, 3))
     self.assertEqual(array.dtype, 'UInt8')
示例#4
0
def apply_mask(args):
    mask_raster = Raster(args.mask)
    for filename in args.raster:
        raster = Raster(filename)
        raster.apply_mask(mask_raster=mask_raster,
                          mask_value=args.mask_value,
                          set_value=args.set_value,
                          out_filename=args.out_file)
示例#5
0
def lsms_segmentation(args):
    raster = Raster(args.raster)
    block_size = (args.block_width, args.block_height) \
        if args.block_width and args.block_height \
        else None
    raster.lsms_segmentation(args.spatialr, args.spectralr, args.thres,
                             args.rangeramp, args.maxiter,
                             object_minsize=args.minsize,
                             block_size=block_size,
                             out_vector_filename=args.vector_file,
                             out_filename=args.out_file)
示例#6
0
def lsms_segmentation(args):
    raster = Raster(args.raster)
    block_size = (args.block_width, args.block_height) \
        if args.block_width and args.block_height \
        else None
    raster.lsms_segmentation(args.spatialr,
                             args.spectralr,
                             args.thres,
                             args.rangeramp,
                             args.maxiter,
                             object_minsize=args.minsize,
                             block_size=block_size,
                             out_vector_filename=args.vector_file,
                             out_filename=args.out_file)
示例#7
0
 def test_raster_should_set_date(self):
     filename = 'data/RGB_unproj.byte.tif'
     tmp_file = tempfile.NamedTemporaryFile(suffix='.tif')
     shutil.copyfile(filename, tmp_file.name)
     raster = Raster(tmp_file.name)
     self.assertIsNone(raster.meta['date_time'])
     dt = datetime(2014, 01, 01)
     raster.date_time = dt
     _check_image(self,
                  tmp_file.name,
                  u'GTiff',
                  791,
                  718,
                  3,
                  'Byte',
                  date_time=dt.strftime('%Y:%m:%d %H:%M:%S'))
     self.assertEqual(raster.meta['date_time'], dt)
示例#8
0
 def test_raster_should_set_projection(self):
     filename = 'data/RGB_unproj.byte.tif'
     tmp_file = tempfile.NamedTemporaryFile(suffix='.tif')
     shutil.copyfile(filename, tmp_file.name)
     raster = Raster(tmp_file.name)
     self.assertIsNone(raster.srs)
     sr = osr.SpatialReference()
     sr.ImportFromEPSG(4326)
     raster.srs = sr
     _check_image(self,
                  tmp_file.name,
                  u'GTiff',
                  791,
                  718,
                  3,
                  'Byte',
                  proj=sr.ExportToProj4())
     self.assertTrue(raster.meta['srs'].IsSame(sr))
示例#9
0
 def test_raster_should_get_block_list(self):
     filename = 'data/RGB.byte.tif'
     raster = Raster(filename)
     blocks = raster.block_windows()
     self.assertEqual(blocks.next(), (0, 0, raster.meta['block_size'][0],
                                      raster.meta['block_size'][1]))
     last_block = None
     length = 1
     total_height = raster.block_size[1]
     while True:
         try:
             last_block = blocks.next()
             length += 1
             total_height += last_block[3]
         except StopIteration:
             break
     self.assertEqual(last_block, (0, 717, raster.meta['block_size'][0], 1))
     self.assertEqual(length, 240)
     self.assertEqual(total_height, raster.meta['height'])
示例#10
0
def snow_brake_date():
    # Command-line parameters
    parser = argparse.ArgumentParser(
        description="Compute a raster whose value for each pixel is the "
        "date/time of snow break, given a list of temporally distinct, but "
        "spatially identical, images.\n\n"
        "That is, the value of each pixel will be the date/time of the first "
        "image where the snow disappear on the pixel and does not appear again "
        "in the following images.\n\n"
        "Presence or absence of snow is evaluated from the Normalized "
        "Difference Snow Index (NDSI) which is computed from green and "
        "mid-infrared band."
        "Dates will be in numeric format (eg. Apr 25, 2013 (midnight) "
        "-> 1366840800.0)")
    parser.add_argument("rasters", nargs='+',
                        help="List of input images")
    parser.add_argument("-g", "--idx_green", type=int, default=3,
                        help="Index of a green band, common to all images "
                        "(default: 3)")
    parser.add_argument("-mir", "--idx_mir", type=int, default=6,
                        help="Index of a mid-infrared band, common to all "
                        "images (default: 6)")
    parser.add_argument("-o", "--out_file", default='./snow_break.tif',
                        help="Path to the output file (default: "
                        "'snow_break.tif' in the current folder)")
    args = parser.parse_args()

    # Perform the actual work

    # Compute all NDSIs, read them as NumPy arrays, and stack them into one
    # array
    rasters = [Raster(filename) for filename in args.rasters]
    rasters.sort(key=lambda raster: raster.meta['datetime'])
    for raster in rasters:
        assert raster.meta['datetime'] is not None, "Raster has no "
        "TIFFTAG_DATETIME metatadata: {}".format(raster.filename)
    ndsis = [raster.mndwi('{}.mndwi.tif'.format(
        os.path.basename(os.path.splitext(raster.filename)[0])),
        idx_green=args.idx_green,
        idx_mir=args.idx_mir)
        for raster in rasters]
    arrays = [ndsi.array() for ndsi in ndsis]
    stack_array = np.dstack(arrays)

    # List of dates
    dates = [ndsi.meta['datetime'] for ndsi in ndsis]

    # Create an empty array of correct size
    ndsi0 = ndsis[0]
    width = ndsi0.meta['width']
    height = ndsi0.meta['height']
    out_array = np.empty((height, width), dtype=np.float64)

    # Find the snow-brake date
    _under_threshold_date(stack_array, dates, out_array)
示例#11
0
def compute_temporal_stats(args):
    rasters = [Raster(filename) for filename in args.raster]
    kw = {}
    kw['out_filename'] = args.out_file
    if args.band_idx is not None:
        kw['band_idx'] = args.band_idx
    if args.stat is not None:
        kw['stats'] = list(args.stat)
    if args.date_from is not None:
        kw['date2float'] = partial(_days_between, args.date_from)
    temporal_stats(*rasters, **kw)
示例#12
0
 def test_raster_should_get_block_list_with_given_size(self):
     filename = 'data/RGB.byte.tif'
     raster = Raster(filename)
     xsize = 7
     ysize = 2
     lastx = raster.meta['width'] - xsize
     lasty = raster.meta['height'] - ysize
     number_blocks = \
         raster.meta['width'] / xsize * raster.meta['height'] / ysize
     blocks = raster.block_windows(block_size=(xsize, ysize))
     self.assertEqual(blocks.next(), (0, 0, xsize, ysize))
     last_block = None
     length = 1
     while True:
         try:
             last_block = blocks.next()
             length += 1
         except StopIteration:
             break
     self.assertEqual(last_block, (lastx, lasty, xsize, ysize))
     self.assertEqual(length, number_blocks)
示例#13
0
 def test_concatenate_should_work_when_same_size_same_proj(self):
     rasters = [Raster(os.path.join(self.folder, filename))
                for filename in os.listdir(self.folder)
                if filename.startswith('l8_')
                and filename.endswith('.tif')]
     out_file = tempfile.NamedTemporaryFile(suffix='.tif')
     concatenate_rasters(*rasters, out_filename=out_file.name)
     _check_image(tester=self,
                  filename=out_file.name,
                  driver=u'GTiff',
                  width=rasters[0].meta['width'],
                  height=rasters[0].meta['height'],
                  number_bands=rasters[0].meta['count'] * 8,
                  dtype=rasters[0].meta['dtype'].ustr_dtype,
                  proj=rasters[0].meta['srs'].ExportToProj4())
def stat_to_classification(args):

    #Get the sample-feature matrix from the roi
    X, Y = cla.get_samples_from_roi(args.label_file, args.roi_file,
                                    args.stat_file)

    #Get the sample-feature matrix from the labeled raster
    X_label, reverse = cla.get_samples_from_label_img(args.label_file,
                                                      args.stat_file)

    #Split the roi into two dataset
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y,train_size =\
                                                        args.train_size)
    #set some parameters
    stat = Raster(args.stat_file)
    out_filename = os.path.join(args.dir, args.out_file)

    #Initialize the classifier, train it and perform it
    Y_predict = cla.decision_tree(X_train,
                                  Y_train,
                                  X_test,
                                  X_label,
                                  reverse,
                                  stat,
                                  out_filename,
                                  ext=args.format)

    #Compute the classification metrics and the confusion matrix
    cm, report, accuracy = cla.pred_error_metrics(Y_predict, Y_test,
                                                   target_names = \
                                                   args.target_names)

    #Print the results
    print "confusion matrix\n", cm
    print report
    print "OA :", accuracy

    # Show confusion matrix in a separate window
    plt.matshow(cm)
    plt.title('Confusion matrix')
    plt.colorbar()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show()
示例#15
0
 def test_raster_should_get_attr_values(self):
     filename = 'data/l8_20130425.tif'
     raster = Raster(filename)
     self.assertEqual(raster.filename, filename)
     self.assertEqual(raster.driver.gdal_name, 'GTiff')
     self.assertEqual(raster.width, 66)
     self.assertEqual(raster.height, 56)
     self.assertEqual(raster.count, 7)
     self.assertEqual(raster.dtype.lstr_dtype, 'int16')
     self.assertEqual(raster.block_size, (66, 8))
     self.assertEqual(raster.date_time, datetime(2013, 04, 25))
     self.assertEqual(raster.gdal_extent,
                      ((936306.723651, 6461635.694121),
                       (936306.723651, 6459955.694121),
                       (938286.723651, 6461635.694121),
                       (938286.723651, 6459955.694121)))
     self.assertEqual(
         raster.meta['srs'].ExportToWkt(),
         'PROJCS["RGF93 / Lambert-93",GEOGCS["RGF93",'
         'DATUM["Reseau_Geodesique_Francais_1993",'
         'SPHEROID["GRS 1980",6378137,298.2572221010042,'
         'AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6171"]],'
         'PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],'
         'AUTHORITY["EPSG","4171"]],'
         'PROJECTION["Lambert_Conformal_Conic_2SP"],'
         'PARAMETER["standard_parallel_1",49],'
         'PARAMETER["standard_parallel_2",44],'
         'PARAMETER["latitude_of_origin",46.5],'
         'PARAMETER["central_meridian",3],'
         'PARAMETER["false_easting",700000],'
         'PARAMETER["false_northing",6600000],UNIT["metre",1,'
         'AUTHORITY["EPSG","9001"]],AUTHORITY["EPSG","2154"]]')
     self.assertEqual(raster.meta['transform'], (936306.723651,
                                                 30.0,
                                                 0.0,
                                                 6461635.694121,
                                                 0.0,
                                                 -30.0))
示例#16
0
 def test_concatenate_should_raise_assertion_error_if_not_same_proj(self):
     rasters = [Raster(os.path.join(self.folder, 'RGB.byte.tif')),
                Raster(os.path.join(self.folder, 'RGB_unproj.byte.tif'))]
     out_file = tempfile.NamedTemporaryFile(suffix='.tif')
     self.assertRaises(AssertionError, concatenate_rasters, *rasters,
                       out_filename=out_file.name)
示例#17
0
def label_stats(args):
    raster = Raster(args.raster)
    label_raster = Raster(args.label_file)
    raster.label_stats(args.stats,
                       label_raster=label_raster,
                       out_filename=args.out_file)
示例#18
0
def main():
    raster = Raster(IMG)
    raster.ndvi(4, 5, '/tmp/l8_20130714_ndvi.tif')
    raster.ndmi(5, 6, '/tmp/l8_20130714_ndwi.tif')
    raster.ndsi(3, 6, '/tmp/l8_20130714_mndwi.tif',)
def compute_temporal_stats():
    # Command-line parameters
    parser = argparse.ArgumentParser(
        description="Compute pixel-wise statistics on radiometric indices from "
        "a given list of multitemporal, but spatially identical, images.\n\n"
        "Output is a multi-band image where each band contains a result (eg. "
        "maximum, mean). For results taken from original values (eg. maximum), "
        "there is an additional band which gives the date/time at which the "
        "result has been found in numeric format (eg. maximum has occured on "
        "Apr 25, 2013 (midnight) -> 1366840800.0)")
    parser.add_argument("rasters", nargs='+', help="List of input images")
    parser.add_argument("-b",
                        "--idx_blue",
                        type=int,
                        default=2,
                        help="Index of a blue band, common to all images "
                        "(default: 2)")
    parser.add_argument("-g",
                        "--idx_green",
                        type=int,
                        default=3,
                        help="Index of a green band, common to all images "
                        "(default: 3)")
    parser.add_argument("-r",
                        "--idx_red",
                        type=int,
                        default=4,
                        help="Index of a red band, common to all images "
                        "(default: 4)")
    parser.add_argument("-nir",
                        "--idx_nir",
                        type=int,
                        default=5,
                        help="Index of a near-infrared band, common to all "
                        "images (default: 5)")
    parser.add_argument("-mir",
                        "--idx_mir",
                        type=int,
                        default=6,
                        help="Index of a mid-infrared band, common to all "
                        "images (default: 6)")
    parser.add_argument("-d",
                        "--date-from",
                        type=valid_date,
                        help="Date from which to compute statis "
                        "the input images and whose values are dates in "
                        "numeric format. If specified, statistical dates are "
                        "computed relative to the dates in this raster")
    parser.add_argument(
        "-t",
        "--time_raster",
        help="Path to a mono-band raster with same extent than "
        "the input images and whose values are dates in "
        "numeric format. If specified, statistical dates are "
        "computed relative to the dates in this raster")
    parser.add_argument(
        "-o",
        "--out_file",
        default='./stats.tif',
        help="Path to the output file (default: 'stats.tif' in "
        "the current folder)")
    args = parser.parse_args()

    # Do the actual work
    rasters = [Raster(filename) for filename in args.rasters]
    ndvis = [
        raster.ndvi(idx_red=args.idx_red,
                    idx_nir=args.idx_nir,
                    '{}.ndvi.tif'.format(
                        os.path.basename(os.path.splitext(
                            raster.filename)[0]))) for raster in rasters
    ]
    ndwis = [
        raster.ndwi(idx_nir=args.idx_nir,
                    idx_mir=args.idx_mir,
                    '{}.ndwi.tif'.format(
                        os.path.basename(os.path.splitext(
                            raster.filename)[0]))) for raster in rasters
    ]
    mndwis = [
        raster.mndwi(idx_green=args.idx_green,
                     idx_mir=args.idx_mir,
                     '{}.mndwi.tif'.format(
                         os.path.basename(
                             os.path.splitext(raster.filename)[0])))
        for raster in rasters
    ]
    temporal_stats(ndvis,
                   'stats.ndvi.tif',
                   'GTiff',
                   stats=['min', 'max', 'range'])
    temporal_stats(ndwis,
                   'stats.ndwi.tif',
                   'GTiff',
                   stats=['min', 'max', 'range'])
    temporal_stats(mndwis,
                   'stats.mndwi.tif',
                   'GTiff',
                   stats=['min', 'max', 'range'])
示例#20
0
def label_stats(args):
    raster = Raster(args.raster)
    label_raster = Raster(args.label_file)
    raster.label_stats(args.stats, label_raster=label_raster,
                       out_filename=args.out_file)
示例#21
0
def main():
    raster = Raster(IMG)
    raster.ndvi(3, 4, '/tmp/spot6_ndvi.tif')
示例#22
0
def pan_sharpen(args):
    raster = Raster(args.raster)
    pan_raster = Raster(args.pan_file)
    raster.fusion(pan_raster, out_filename=args.out_file)
示例#23
0
def remove_bands(args):
    for filename in args.raster:
        raster = Raster(filename)
        raster.remove_bands(*args.idxs, out_filename=args.out_file)
示例#24
0
def main():
    raster = Raster(IMG)
    raster.ndvi(3, 4, '/tmp/spot6_ndvi.tif')
示例#25
0
# -*- coding: utf-8 -*-
"""
Created on Mon Feb  9 14:13:31 2015

@author: sig
"""
from ymraster import Raster, write_file, get_samples_from_roi
from sklearn import tree
from sklearn.externals.six import StringIO  
import pydot #TODO install the module


rst_file = "data/new_set2/Spot6_MS_31072013_masked.tif"
rst = Raster(rst_file)
rst_array = rst.array()

roi_file =""
label_file = ""
stat_file = ""

statX_array, statY_array = get_samples_from_roi(label_file,roi_file,
                                                stat_file )

clf = tree.DecisionTreeClassifier()
clf = clf.fit(statX_array, statY_array)
classif = clf.predict(rst_array)

 
dot_data = StringIO() 
tree.export_graphviz(clf, out_file=dot_data) 
graph = pydot.graph_from_dot_data(dot_data.getvalue()) 
示例#26
0
 def setUp(self):
     self.raster = Raster('data/l8_20130714.tif')
示例#27
0
def concatenate(args):
    rasters = [Raster(raster) for raster in args.raster]
    concatenate_rasters(*rasters, out_filename=args.out_file)
示例#28
0
def ndwi(args):
    for filename in args.in_list:
        raster = Raster(filename)
        raster.ndwi(args.idx_nir, args.idx_mir, out_filename=args.out_file)
示例#29
0
def mndwi(args):
    for filename in args.in_list:
        raster = Raster(filename)
        raster.mndwi(args.idx_green, args.idx_mir, out_filename=args.out_file)
示例#30
0
class TestOtbFunctions(unittest.TestCase):

    def setUp(self):
        self.raster = Raster('data/l8_20130714.tif')

    def test_should_remove_band(self):
        out_file = tempfile.NamedTemporaryFile(suffix='.tif')
        result = self.raster.remove_bands(6, out_filename=out_file.name)
        self.assertEqual(result.meta['count'], self.raster.meta['count'] - 1)
        _check_image(tester=self,
                     filename=out_file.name,
                     driver=u'GTiff',
                     width=self.raster.meta['width'],
                     height=self.raster.meta['height'],
                     number_bands=self.raster.meta['count'] - 1,
                     dtype=self.raster.meta['dtype'].ustr_dtype,
                     proj=self.raster.meta['srs'].ExportToProj4())

    def test_should_compute_ndvi(self):
        out_file = tempfile.NamedTemporaryFile(suffix='.tif')
        self.raster.ndvi(red_idx=4, nir_idx=5, out_filename=out_file.name)
        _check_image(tester=self,
                     filename=out_file.name,
                     driver=u'GTiff',
                     width=self.raster.meta['width'],
                     height=self.raster.meta['height'],
                     number_bands=1,
                     dtype='Float32',
                     date_time=self.raster.meta['date_time'],
                     proj=self.raster.meta['srs'].ExportToProj4())

    def test_should_compute_ndwi(self):
        out_file = tempfile.NamedTemporaryFile(suffix='.tif')
        self.raster.ndwi(nir_idx=4, mir_idx=5, out_filename=out_file.name)
        _check_image(tester=self,
                     filename=out_file.name,
                     driver=u'GTiff',
                     width=self.raster.meta['width'],
                     height=self.raster.meta['height'],
                     number_bands=1,
                     dtype='Float32',
                     date_time=self.raster.meta['date_time'],
                     proj=self.raster.meta['srs'].ExportToProj4())

    def test_should_compute_mndwi(self):
        out_file = tempfile.NamedTemporaryFile(suffix='.tif')
        self.raster.mndwi(green_idx=4, mir_idx=5, out_filename=out_file.name)
        _check_image(tester=self,
                     filename=out_file.name,
                     driver=u'GTiff',
                     width=self.raster.meta['width'],
                     height=self.raster.meta['height'],
                     number_bands=1,
                     dtype='Float32',
                     date_time=self.raster.meta['date_time'],
                     proj=self.raster.meta['srs'].ExportToProj4())

    def test_lsms_segmentation_should_compute_segmented_image(self):
        out_file = tempfile.NamedTemporaryFile(suffix='.tif')
        out_vector_filename = os.path.join(
            tempfile.gettempdir(), 'labels.shp')
        out_raster = self.raster.lsms_segmentation(
            spatialr=5,
            ranger=15,
            thres=0.1,
            rangeramp=0,
            maxiter=5,
            object_minsize=10,
            out_vector_filename=out_vector_filename,
            out_filename=out_file.name)

        # Output raster should have same size, same proj, 1 band
        _check_image(tester=self,
                     filename=out_file.name,
                     driver=u'GTiff',
                     width=self.raster.meta['width'],
                     height=self.raster.meta['height'],
                     number_bands=1,
                     dtype='Float32',
                     proj=self.raster.meta['srs'].ExportToProj4())

        # Output vector should have same number of polygon than label
        array = out_raster.array_from_bands()
        number_labels = len(np.unique(array))
        ds = ogr.Open(out_vector_filename)
        layer = ds.GetLayer(0)
        self.assertEqual(layer.GetFeatureCount(), number_labels)

    def tearDown(self):
        tmpdir = tempfile.gettempdir()
        tmpfilenames = [filename
                        for filename in os.listdir(tmpdir)
                        if filename.endswith('.tif.aux.xml')
                        or filename.startswith('segmented_merged.')]
        for filename in tmpfilenames:
            os.remove(os.path.join(tmpdir, filename))
示例#31
0
文件: ndvi.py 项目: thierion/ymraster
def ndvi(args):
    for filename in args.in_list:
        raster = Raster(filename)
        raster.ndvi(args.idx_red, args.idx_nir, out_filename=args.out_file)
示例#32
0
def pan_sharpen(args):
    raster = Raster(args.raster)
    pan_raster = Raster(args.pan_file)
    raster.fusion(pan_raster, out_filename=args.out_file)