def tiny_yolo2_body(inputs, num_anchors, num_classes): '''Create Tiny YOLO_v2 model CNN body in keras.''' x = compose(DarknetConv2D_BN_Leaky(16, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(32, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(64, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(128, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(256, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same'), DarknetConv2D_BN_Leaky(512, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding='same'), DarknetConv2D_BN_Leaky(1024, (3, 3)))(inputs) # TODO: darknet tiny YOLOv2 use different filter number for COCO and VOC if num_classes == 80: y = compose( DarknetConv2D_BN_Leaky(512, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv'))(x) else: y = compose( DarknetConv2D_BN_Leaky(1024, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv'))(x) return Model(inputs, y)
def yolo2lite_efficientnet_body(inputs, num_anchors, num_classes, level=0): ''' Create YOLO_v2 Lite EfficientNet model CNN body in keras. # Arguments level: EfficientNet level number. by default we use basic EfficientNetB0 as backbone ''' efficientnet, feature_map_info = get_efficientnet_backbone_info(inputs, level=level) f1_channel_num = feature_map_info['f1_channel_num'] conv_head1 = compose( Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num, (3, 3)), Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num, (3, 3)))(efficientnet.output) f2 = efficientnet.get_layer('block6a_expand_activation').output conv_head2 = DarknetConv2D_BN_Leaky(int(64*(f1_channel_num//1024)), (1, 1))(f2) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv_head2_reshaped = Lambda( space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv_head2) x = Concatenate()([conv_head2_reshaped, conv_head1]) x = Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num, (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
def yolo2lite_mobilenetv2_body(inputs, num_anchors, num_classes, alpha=1.0): """Create YOLO_V2 Lite MobileNetV2 model CNN body in Keras.""" mobilenetv2 = MobileNetV2(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenetv2.output : 13 x 13 x 1280 # block_13_expand_relu(layers[119]) : 26 x 26 x (576*alpha) conv_head1 = compose( Depthwise_Separable_Conv2D_BN_Leaky(1280, (3, 3)), Depthwise_Separable_Conv2D_BN_Leaky(1280, (3, 3)))(mobilenetv2.output) # block_13_expand_relu output shape: 26 x 26 x (576*alpha) block_13_expand_relu = mobilenetv2.layers[119].output conv_head2 = DarknetConv2D_BN_Leaky(int(64*alpha), (1, 1))(block_13_expand_relu) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv_head2_reshaped = Lambda( space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv_head2) x = Concatenate()([conv_head2_reshaped, conv_head1]) x = Depthwise_Separable_Conv2D_BN_Leaky(1280, (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
def yolo2_body(inputs, num_anchors, num_classes, weights_path=None): """Create YOLO_V2 model CNN body in Keras.""" darknet19 = Model(inputs, darknet19_body()(inputs)) if weights_path is not None: darknet19.load_weights(weights_path, by_name=True) print('Load weights {}.'.format(weights_path)) # input: 416 x 416 x 3 # darknet19.output : 13 x 13 x 1024 # conv13(layers[43]) : 26 x 26 x 512 conv20 = compose(DarknetConv2D_BN_Leaky(1024, (3, 3)), DarknetConv2D_BN_Leaky(1024, (3, 3)))(darknet19.output) # conv13 output shape: 26 x 26 x 512 conv13 = darknet19.layers[43].output conv21 = DarknetConv2D_BN_Leaky(64, (1, 1))(conv13) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv21_reshaped = Lambda(space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv21) x = Concatenate()([conv21_reshaped, conv20]) x = DarknetConv2D_BN_Leaky(1024, (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
def yolo2_mobilenetv3small_body(inputs, num_anchors, num_classes, alpha=1.0): """Create YOLO_V2 MobileNetV3Small model CNN body in Keras.""" mobilenetv3small = MobileNetV3Small(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenetv3small.output(layer 165, final feature map): 13 x 13 x (576*alpha) # expanded_conv_10/Add(layer 162, end of block10): 13 x 13 x (96*alpha) # activation_22(layer 117, middle in block8) : 26 x 26 x (288*alpha) # expanded_conv_7/Add(layer 114, end of block7) : 26 x 26 x (48*alpha) conv_head1 = compose(DarknetConv2D_BN_Leaky(int(576 * alpha), (3, 3)), DarknetConv2D_BN_Leaky(int(576 * alpha), (3, 3)))( mobilenetv3small.output) # activation_22(layer 117) output shape: 26 x 26 x (288*alpha) activation_22 = mobilenetv3small.layers[117].output conv_head2 = DarknetConv2D_BN_Leaky(int(64 * alpha), (1, 1))(activation_22) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv_head2_reshaped = Lambda(space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv_head2) x = Concatenate()([conv_head2_reshaped, conv_head1]) x = DarknetConv2D_BN_Leaky(int(576 * alpha), (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
def tiny_yolo2lite_mobilenetv3large_body(inputs, num_anchors, num_classes, alpha=1.0): """Create Tiny YOLO_V2 Lite MobileNetV3Large model CNN body in Keras.""" mobilenetv3large = MobileNetV3Large(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) print('backbone layers number: {}'.format(len(mobilenetv3large.layers))) # input: 416 x 416 x 3 # mobilenetv3large.output(layer 194, final feature map): 13 x 13 x (960*alpha) # f1: 13 x 13 x (960*alpha) f1 = mobilenetv3large.output f1_channel_num = int(960 * alpha) y = compose( Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num, (3, 3), block_id_str='pred_1'), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv'))(f1) return Model(inputs, y)
def yolo2_mobilenetv3large_body(inputs, num_anchors, num_classes, alpha=1.0): """Create YOLO_V2 MobileNetV3Large model CNN body in Keras.""" mobilenetv3large = MobileNetV3Large(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenetv3large.output(layer 194, final feature map): 13 x 13 x (960*alpha) # expanded_conv_14/Add(layer 191, end of block14): 13 x 13 x (160*alpha) # activation_29(layer 146, middle in block12) : 26 x 26 x (672*alpha) # expanded_conv_11/Add(layer 143, end of block11) : 26 x 26 x (112*alpha) conv_head1 = compose(DarknetConv2D_BN_Leaky(int(960 * alpha), (3, 3)), DarknetConv2D_BN_Leaky(int(960 * alpha), (3, 3)))( mobilenetv3large.output) # activation_29(layer 146) output shape: 26 x 26 x (672*alpha) activation_29 = mobilenetv3large.layers[146].output conv_head2 = DarknetConv2D_BN_Leaky(int(64 * alpha), (1, 1))(activation_29) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv_head2_reshaped = Lambda(space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv_head2) x = Concatenate()([conv_head2_reshaped, conv_head1]) x = DarknetConv2D_BN_Leaky(int(960 * alpha), (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
def yolo2_mobilenet_body(inputs, num_anchors, num_classes, alpha=1.0): """Create YOLO_V2 MobileNet model CNN body in Keras.""" mobilenet = MobileNet(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenet.output : 13 x 13 x (1024*alpha) # conv_pw_11_relu(layers[73]) : 26 x 26 x (512*alpha) conv_head1 = compose(DarknetConv2D_BN_Leaky(int(1024 * alpha), (3, 3)), DarknetConv2D_BN_Leaky(int(1024 * alpha), (3, 3)))(mobilenet.output) # conv_pw_11_relu output shape: 26 x 26 x (512*alpha) conv_pw_11_relu = mobilenet.layers[73].output conv_head2 = DarknetConv2D_BN_Leaky(int(64 * alpha), (1, 1))(conv_pw_11_relu) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv_head2_reshaped = Lambda(space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv_head2) x = Concatenate()([conv_head2_reshaped, conv_head1]) x = DarknetConv2D_BN_Leaky(int(1024 * alpha), (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
def darknet19(inputs): """Generate Darknet-19 model for Imagenet classification.""" body = darknet19_body()(inputs) x = DarknetConv2D(1000, (1, 1))(body) x = GlobalAveragePooling2D()(x) logits = Softmax()(x) return Model(inputs, logits)
def yolo2lite_xception_body(inputs, num_anchors, num_classes): """Create YOLO_V2 Lite Xception model CNN body in Keras.""" xception = Xception(input_tensor=inputs, weights='imagenet', include_top=False) # input: 416 x 416 x 3 # xception.output: 13 x 13 x 2048 # block13_sepconv2_bn(middle in block13, layers[121]): 26 x 26 x 1024 # add_46(end of block12, layers[115]): 26 x 26 x 728 conv_head1 = compose(Depthwise_Separable_Conv2D_BN_Leaky(2048, (3, 3)), Depthwise_Separable_Conv2D_BN_Leaky(2048, (3, 3)))( xception.output) # block13_sepconv2_bn output shape: 26 x 26 x 1024 block13_sepconv2_bn = xception.layers[121].output conv_head2 = DarknetConv2D_BN_Leaky(128, (1, 1))(block13_sepconv2_bn) # TODO: Allow Keras Lambda to use func arguments for output_shape? conv_head2_reshaped = Lambda(space_to_depth_x2, output_shape=space_to_depth_x2_output_shape, name='space_to_depth')(conv_head2) x = Concatenate()([conv_head2_reshaped, conv_head1]) x = Depthwise_Separable_Conv2D_BN_Leaky(2048, (3, 3))(x) x = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv')(x) return Model(inputs, x)
def tiny_yolo2lite_mobilenetv2_body(inputs, num_anchors, num_classes): """Create Tiny YOLO_V2 Lite MobileNetV2 model CNN body in Keras.""" mobilenetv2 = MobileNetV2(input_tensor=inputs, weights='imagenet', include_top=False, alpha=1.0) # input: 416 x 416 x 3 # mobilenetv2.output : 13 x 13 x 1280 y = compose( Depthwise_Separable_Conv2D_BN_Leaky(1280, (3,3)), DarknetConv2D(num_anchors*(num_classes+5), (1,1), name='predict_conv'))(mobilenetv2.output) return Model(inputs, y)
def tiny_yolo2lite_efficientnet_body(inputs, num_anchors, num_classes, level=0): ''' Create Tiny YOLO_v2 Lite EfficientNet model CNN body in keras. # Arguments level: EfficientNet level number. by default we use basic EfficientNetB0 as backbone ''' efficientnet, feature_map_info = get_efficientnet_backbone_info(inputs, level=level) f1_channel_num = feature_map_info['f1_channel_num'] y = compose( Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num, (3,3)), DarknetConv2D(num_anchors*(num_classes+5), (1,1), name='predict_conv'))(efficientnet.output) return Model(inputs, y)
def tiny_yolo2_mobilenet_body(inputs, num_anchors, num_classes, alpha=1.0): """Create Tiny YOLO_V2 MobileNet model CNN body in Keras.""" mobilenet = MobileNet(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenet.output : 13 x 13 x (1024*alpha) y = compose( DarknetConv2D_BN_Leaky(int(1024 * alpha), (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv'))(mobilenet.output) return Model(inputs, y)
def tiny_yolo2_mobilenetv3small_body(inputs, num_anchors, num_classes, alpha=1.0): """Create Tiny YOLO_V2 MobileNetV3Small model CNN body in Keras.""" mobilenetv3small = MobileNetV3Small(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) print('backbone layers number: {}'.format(len(mobilenetv3small.layers))) # input: 416 x 416 x 3 # mobilenetv3small.output(layer 165, final feature map): 13 x 13 x (576*alpha) # f1: 13 x 13 x (576*alpha) f1 = mobilenetv3small.output f1_channel_num = int(576*alpha) y = compose( DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)), DarknetConv2D(num_anchors*(num_classes+5), (1,1), name='predict_conv'))(f1) return Model(inputs, y)
def tiny_yolo2lite_efficientnet_body(inputs, num_anchors, num_classes, level=0): ''' Create Tiny YOLO_v2 Lite EfficientNet model CNN body in keras. # Arguments level: EfficientNet level number. by default we use basic EfficientNetB0 as backbone ''' efficientnet, feature_map_info = get_efficientnet_backbone_info(inputs, level=level) print('backbone layers number: {}'.format(len(efficientnet.layers))) f1 = efficientnet.get_layer('top_activation').output f1_channel_num = feature_map_info['f1_channel_num'] y = compose( Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num, (3,3), block_id_str='pred_1'), DarknetConv2D(num_anchors*(num_classes+5), (1,1), name='predict_conv'))(f1) return Model(inputs, y)
def tiny_yolo2_mobilenetv3large_body(inputs, num_anchors, num_classes, alpha=1.0): """Create Tiny YOLO_V2 MobileNetV3Large model CNN body in Keras.""" mobilenetv3large = MobileNetV3Large(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenetv3large.output(layer 194, final feature map): 13 x 13 x (960*alpha) y = compose( DarknetConv2D_BN_Leaky(int(960 * alpha), (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv'))(mobilenetv3large.output) return Model(inputs, y)
def tiny_yolo2lite_mobilenetv3small_body(inputs, num_anchors, num_classes, alpha=1.0): """Create Tiny YOLO_V2 Lite MobileNetV3Small model CNN body in Keras.""" mobilenetv3small = MobileNetV3Small(input_tensor=inputs, weights='imagenet', include_top=False, alpha=alpha) # input: 416 x 416 x 3 # mobilenetv3small.output(layer 165, final feature map): 13 x 13 x (576*alpha) y = compose( Depthwise_Separable_Conv2D_BN_Leaky(int(576 * alpha), (3, 3), block_id_str='11'), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv'))(mobilenetv3small.output) return Model(inputs, y)
def tiny_yolo2_mobilenetv2_body(inputs, num_anchors, num_classes): """Create Tiny YOLO_V2 MobileNetV2 model CNN body in Keras.""" mobilenetv2 = MobileNetV2(input_tensor=inputs, weights='imagenet', include_top=False, alpha=1.0) print('backbone layers number: {}'.format(len(mobilenetv2.layers))) # input: 416 x 416 x 3 # mobilenetv2.output : 13 x 13 x 1280 # f1: 13 x 13 x 1280 f1 = mobilenetv2.output f1_channel_num = 1280 y = compose( DarknetConv2D_BN_Leaky(f1_channel_num, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1), name='predict_conv'))(f1) return Model(inputs, y)