示例#1
0
def yolo3_spp_xception_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 SPP Xception model CNN body in Keras."""
    xception = Xception(input_tensor=inputs,
                        weights='imagenet',
                        include_top=False)

    # input: 416 x 416 x 3
    # block14_sepconv2_act: 13 x 13 x 2048
    # block13_sepconv2_bn(middle in block13): 26 x 26 x 1024
    # add_46(end of block12): 26 x 26 x 728
    # block4_sepconv2_bn(middle in block4) : 52 x 52 x 728
    # add_37(end of block3) : 52 x 52 x 256

    f1 = xception.get_layer('block14_sepconv2_act').output
    # f1 :13 x 13 x 2048
    x, y1 = make_spp_last_layers(f1, 1024, num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(512, (1, 1)), UpSampling2D(2))(x)

    f2 = xception.get_layer('block13_sepconv2_bn').output
    # f2: 26 x 26 x 1024
    x = Concatenate()([x, f2])

    x, y2 = make_last_layers(x, 512, num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x)

    f3 = xception.get_layer('block4_sepconv2_bn').output
    # f3 : 52 x 52 x 728
    x = Concatenate()([x, f3])
    x, y3 = make_last_layers(x, 256, num_anchors * (num_classes + 5))

    return Model(inputs=inputs, outputs=[y1, y2, y3])
示例#2
0
def yolo3_spp_xception_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 SPP Xception model CNN body in Keras."""
    xception = Xception(input_tensor=inputs,
                        weights='imagenet',
                        include_top=False)

    # input: 416 x 416 x 3
    # block14_sepconv2_act: 13 x 13 x 2048
    # block13_sepconv2_bn(middle in block13): 26 x 26 x 1024
    # add_46(end of block12): 26 x 26 x 728
    # block4_sepconv2_bn(middle in block4) : 52 x 52 x 728
    # add_37(end of block3) : 52 x 52 x 256

    # f1: 13 x 13 x 2048
    f1 = xception.get_layer('block14_sepconv2_act').output
    # f2: 26 x 26 x 1024
    f2 = xception.get_layer('block13_sepconv2_bn').output
    # f3: 52 x 52 x 728
    f3 = xception.get_layer('block4_sepconv2_bn').output

    #f1_channel_num = 2048
    #f2_channel_num = 1024
    #f3_channel_num = 728
    f1_channel_num = 1024
    f2_channel_num = 512
    f3_channel_num = 256

    #feature map 1 head & output (13x13 for 416 input)
    x, y1 = make_spp_last_layers(f1, f1_channel_num // 2,
                                 num_anchors * (num_classes + 5))

    #upsample fpn merge for feature map 1 & 2
    x = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                UpSampling2D(2))(x)
    x = Concatenate()([x, f2])

    #feature map 2 head & output (26x26 for 416 input)
    x, y2 = make_last_layers(x, f2_channel_num // 2,
                             num_anchors * (num_classes + 5))

    #upsample fpn merge for feature map 2 & 3
    x = compose(DarknetConv2D_BN_Leaky(f3_channel_num // 2, (1, 1)),
                UpSampling2D(2))(x)
    x = Concatenate()([x, f3])

    #feature map 3 head & output (52x52 for 416 input)
    x, y3 = make_last_layers(x, f3_channel_num // 2,
                             num_anchors * (num_classes + 5))

    return Model(inputs=inputs, outputs=[y1, y2, y3])
def yolo3_spp_body(inputs, num_anchors, num_classes, weights_path=None):
    """Create YOLO_V3 SPP model CNN body in Keras."""
    darknet = Model(inputs, darknet53_body(inputs))
    if weights_path is not None:
        darknet.load_weights(weights_path, by_name=True)
        print('Load weights {}.'.format(weights_path))
    #x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))
    x, y1 = make_spp_last_layers(darknet.output, 512,
                                 num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x)
    x = Concatenate()([x, darknet.layers[152].output])
    x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x)
    x = Concatenate()([x, darknet.layers[92].output])
    x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5))

    return Model(inputs, [y1, y2, y3])
def yolo3_spp_body(inputs, num_anchors, num_classes, weights_path=None):
    """Create YOLO_V3 SPP model CNN body in Keras."""
    darknet = Model(inputs, darknet53_body(inputs))
    if weights_path is not None:
        darknet.load_weights(weights_path, by_name=True)
        print('Load weights {}.'.format(weights_path))

    # f1: 13 x 13 x 1024
    f1 = darknet.output
    # f2: 26 x 26 x 512
    f2 = darknet.layers[152].output
    # f3: 52 x 52 x 256
    f3 = darknet.layers[92].output

    f1_channel_num = 1024
    f2_channel_num = 512
    f3_channel_num = 256

    # feature map 1 head & output (19x19 for 608 input)
    x, y1 = make_spp_last_layers(f1, f1_channel_num // 2,
                                 num_anchors * (num_classes + 5))

    # upsample fpn merge for feature map 1 & 2
    x = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                UpSampling2D(2))(x)
    x = Concatenate()([x, f2])

    # feature map 2 head & output (38x38 for 608 input)
    x, y2 = make_last_layers(x, f2_channel_num // 2,
                             num_anchors * (num_classes + 5))

    # upsample fpn merge for feature map 2 & 3
    x = compose(DarknetConv2D_BN_Leaky(f3_channel_num // 2, (1, 1)),
                UpSampling2D(2))(x)
    x = Concatenate()([x, f3])

    # feature map 3 head & output (76x76 for 608 input)
    x, y3 = make_last_layers(x, f3_channel_num // 2,
                             num_anchors * (num_classes + 5))

    return Model(inputs, [y1, y2, y3])