示例#1
0
文件: YOLO.py 项目: wushian/YOLO
    def render_and_train(self):
        print(global_variable.green)
        print('Render And Train')
        print(global_variable.reset_color)
        # -------------------- show training image # --------------------

        self.batch_size = 1
        ax = yolo_cv.init_matplotlib_figure()

        h, w = self.size
        # -------------------- background -------------------- #
        self.bg_iter_valid = yolo_gluon.load_background(
            'val', self.batch_size, h, w)
        self.bg_iter_train = yolo_gluon.load_background(
            'train', self.batch_size, h, w)
        self.car_renderer = RenderCar(h,
                                      w,
                                      self.classes,
                                      self.ctx[0],
                                      pre_load=False)

        # -------------------- main loop -------------------- #
        while True:
            if (self.backward_counter % 10 == 0 or 'bg' not in locals()):
                bg = yolo_gluon.ImageIter_next_batch(self.bg_iter_train)
                bg = bg.as_in_context(self.ctx[0])

            # -------------------- render dataset -------------------- #
            imgs, labels = self.car_renderer.render(bg,
                                                    'train',
                                                    render_rate=0.5,
                                                    pascal_rate=0.1)

            batch_xs = yolo_gluon.split_render_data(imgs, self.ctx)
            car_batch_ys = yolo_gluon.split_render_data(labels, self.ctx)

            self._train_batch(batch_xs, car_bys=car_batch_ys)

            # -------------------- show training image # --------------------
            if self.use_fp16:
                img = img.astype('float32')

            img = yolo_gluon.batch_ndimg_2_cv2img(batch_xs[0])[0]
            img = yolo_cv.cv2_add_bbox(img,
                                       car_batch_ys[0][0, 0].asnumpy(),
                                       4,
                                       use_r=0)
            yolo_cv.matplotlib_show_img(ax, img)
            print(car_batch_ys[0][0])
            raw_input()
示例#2
0
文件: YOLO.py 项目: wushian/YOLO
    def _train_thread(self):
        while not self.shutdown_training:
            if not self.rendering_done:
                # training images are not ready
                # print('rendering')
                time.sleep(0.01)
                continue

            batch_xs = self.imgs.copy()
            car_batch_ys = self.labels.copy()

            batch_xs = yolo_gluon.split_render_data(batch_xs, self.ctx)
            car_batch_ys = yolo_gluon.split_render_data(car_batch_ys, self.ctx)

            self.rendering_done = False
            self._train_batch(batch_xs, car_batch_ys)
示例#3
0
    def _train_or_valid(self, mode):
        print(global_variable.cyan)
        print(mode)
        print(global_variable.reset_color)
        if mode == 'val':
            self.batch_size = 1
            ax = yolo_cv.init_matplotlib_figure()
            # self.net = yolo_gluon.init_executor(
            #    self.export_file, self.size, self.ctx[0])

        # -------------------- background -------------------- #
        LP_generator = licence_plate_render.LPGenerator(*self.size)
        bg_iter = yolo_gluon.load_background(mode, self.batch_size, *self.size)

        # -------------------- main loop -------------------- #
        self.backward_counter = 0
        while True:
            if (self.backward_counter % 3 == 0 or 'bg' not in locals()):
                bg = yolo_gluon.ImageIter_next_batch(bg_iter)
                bg = bg.as_in_context(self.ctx[0]) / 255.

            # -------------------- render dataset -------------------- #
            imgs, labels = LP_generator.add(bg, self.LP_r_max, add_rate=0.5)

            if mode == 'train':
                batch_xs = yolo_gluon.split_render_data(imgs, self.ctx)
                batch_ys = yolo_gluon.split_render_data(labels, self.ctx)
                self._train_batch_LP(batch_xs, batch_ys)

            elif mode == 'val':
                batch_out = self.net(imgs)
                pred = self.predict_LP(batch_out)

                img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0]

                labels = labels.asnumpy()

                img, _ = LP_generator.project_rect_6d.add_edges(
                    img, labels[0, 0, 1:7])

                img, clipped_LP = LP_generator.project_rect_6d.add_edges(
                    img, pred[1:])

                yolo_cv.matplotlib_show_img(ax, img)
                print(labels)
                print(pred)
                raw_input('--------------------------------------------------')
示例#4
0
    def render_and_train(self):
        print(global_variable.green)
        print('Render And Train')
        print(global_variable.reset_color)
        # -------------------- show training image # --------------------
        '''
        self.batch_size = 1
        ax = yolo_cv.init_matplotlib_figure()
        '''
        h, w = self.size
        bs = self.batch_size
        # -------------------- background -------------------- #
        self.bg_iter_valid = yolo_gluon.load_background('val', bs, h, w)
        self.bg_iter_train = yolo_gluon.load_background('train', bs, h, w)

        self.car_renderer = RenderCar(h, w, self.classes, self.ctx[0], pre_load=False)
        LP_generator = licence_plate_render.LPGenerator(h, w)

        # -------------------- main loop -------------------- #
        while True:
            if (self.backward_counter % 10 == 0 or 'bg' not in locals()):
                bg = yolo_gluon.ImageIter_next_batch(self.bg_iter_train)
                bg = bg.as_in_context(self.ctx[0])

            # -------------------- render dataset -------------------- #
            imgs, labels = self.car_renderer.render(
                bg, 'train', render_rate=0.5, pascal_rate=0.1)

            imgs, LP_labels = LP_generator.add(imgs, self.LP_r_max, add_rate=0.5)

            batch_xs = yolo_gluon.split_render_data(imgs, self.ctx)
            car_batch_ys = yolo_gluon.split_render_data(labels, self.ctx)
            LP_batch_ys = yolo_gluon.split_render_data(LP_labels, self.ctx)

            self._train_batch(batch_xs, car_batch_ys, LP_batch_ys)

            # -------------------- show training image # --------------------
            '''
示例#5
0
文件: OCR.py 项目: walker930/YOLO
    print(global_variable.cyan)
    print('OCR Render And Train')

    h, w = size
    bg_iter_train = yolo_gluon.load_background('train', batch_size, h, w)
    generator = licence_plate_render.LPGenerator(*size)

    while True:
        if (backward_counter % 10 == 0 or 'bg' not in locals()):
            bg = yolo_gluon.ImageIter_next_batch(bg_iter_train)
            bg = bg.as_in_context(ctx[0])

        imgs, labels = generator.render(bg)

        batch_xs = yolo_gluon.split_render_data(imgs, ctx)
        batch_ys = yolo_gluon.split_render_data(labels, ctx)

        train_the(batch_xs, batch_ys)
        #raw_input('next')

elif args.mode == 'valid':
    print(global_variable.cyan)
    print('Render And Valid')

    bs = 16
    h, w = size
    bg_iter = yolo_gluon.load_background('val', bs, *size)
    generator = licence_plate_render.LPGenerator(*size)

    plt.ion()