示例#1
0
文件: yolo.py 项目: RI-SE/smirk
 def _profile_one_layer(self, m, x, dt):
     c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
     o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
     t = time_sync()
     for _ in range(10):
         m(x.copy() if c else x)
     dt.append((time_sync() - t) * 100)
     if m == self.model[0]:
         LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
     LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
     if c:
         LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
示例#2
0
    def forward(self, imgs, size=640, augment=False, profile=False):
        # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
        #   file:       imgs = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        t = [time_sync()]
        p = next(self.model.parameters()) if self.pt else torch.zeros(
            1)  # for device and type
        autocast = self.amp and (p.device.type != 'cpu'
                                 )  # Automatic Mixed Precision (AMP) inference
        if isinstance(imgs, torch.Tensor):  # torch
            with amp.autocast(enabled=autocast):
                return self.model(
                    imgs.to(p.device).type_as(p), augment,
                    profile)  # inference

        # Pre-process
        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (
            1, [imgs])  # number of images, list of images
        shape0, shape1, files = [], [], [
        ]  # image and inference shapes, filenames
        for i, im in enumerate(imgs):
            f = f'image{i}'  # filename
            if isinstance(im, (str, Path)):  # filename or uri
                im, f = Image.open(
                    requests.get(im, stream=True).raw if str(im).
                    startswith('http') else im), im
                im = np.asarray(exif_transpose(im))
            elif isinstance(im, Image.Image):  # PIL Image
                im, f = np.asarray(
                    exif_transpose(im)), getattr(im, 'filename', f) or f
            files.append(Path(f).with_suffix('.jpg').name)
            if im.shape[0] < 5:  # image in CHW
                im = im.transpose(
                    (1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
            im = im[..., :3] if im.ndim == 3 else np.tile(
                im[..., None], 3)  # enforce 3ch input
            s = im.shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
            imgs[i] = im if im.data.contiguous else np.ascontiguousarray(
                im)  # update
        shape1 = [
            make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)
        ]  # inference shape
        x = [
            letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0]
            for im in imgs
        ]  # pad
        x = np.stack(x, 0) if n > 1 else x[0][None]  # stack
        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
        x = torch.from_numpy(x).to(
            p.device).type_as(p) / 255  # uint8 to fp16/32
        t.append(time_sync())

        with amp.autocast(enabled=autocast):
            # Inference
            y = self.model(x, augment, profile)  # forward
            t.append(time_sync())

            # Post-process
            y = non_max_suppression(y if self.dmb else y[0],
                                    self.conf,
                                    iou_thres=self.iou,
                                    classes=self.classes,
                                    agnostic=self.agnostic,
                                    multi_label=self.multi_label,
                                    max_det=self.max_det)  # NMS
            for i in range(n):
                scale_coords(shape1, y[i][:, :4], shape0[i])

            t.append(time_sync())
            return Detections(imgs, y, files, t, self.names, x.shape)
示例#3
0
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url
                                                               and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (
        pt or jit or onnx or engine
    ) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem,
                                   mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(
                            '.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}'
        % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
def rtsp_to_mongodb():

    with open("/home/asyed/airflow/dags/parameters.json") as f:

        parms = json.load(f)

    agnostic_nms = parms["agnostic_nms"]
    augment = parms["augment"]
    classes = parms["classes"]
    conf_thres = parms["conf_thres"]
    config_deepsort = parms["config_deepsort"]
    deep_sort_model = parms["deep_sort_model"]
    device = parms["device"]
    dnn = False
    evaluate = parms["evaluate"]
    exist_ok = parms["exist_ok"]
    fourcc = parms["fourcc"]
    half = False
    print(device)
    imgsz = parms["imgsz"]
    iou_thres = parms["iou_thres"]
    max_det = parms["max_det"]
    name = parms["name"]
    # save_vid = parms["save_vid"]
    #show_vid = parms["show_vid"]
    source = parms["source"]
    visualize = parms["visualize"]
    yolo_model = parms["yolo_model"]
    webcam = parms["webcam"]
    save_txt = parms["save_txt"]
    homography = np.array(parms["homography"])

    url = "mongodb://localhost:27017"
    client = MongoClient(url)
    db = client.trajectory_database

    today_date = date.today().strftime("%m-%d-%y")
    new = "file_image_coordinates_" + today_date
    collection = db[new]

    cfg = get_config()
    cfg.merge_from_file(config_deepsort)

    deepsort = DeepSort(deep_sort_model,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    device = select_device(device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
    # its own .txt file. Hence, in that case, the output folder is not restored
    # make new output folder

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(yolo_model, device=device, dnn=dnn)
    stride, names, pt, jit, _ = model.stride, model.names, model.pt, model.jit, model.onnx
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= pt and device.type != 'cpu'  # half precision only supported by PyTorch on CUDA
    if pt:
        model.model.half() if half else model.model.float()

    # Set Dataloader
    vid_path, vid_writer = None, None
    # Check if environment supports image displays

    cudnn.benchmark = True  # set True to speed up constant image size inference

    dataset = LoadStreams(source,
                          img_size=imgsz,
                          stride=stride,
                          auto=pt and not jit)

    bs = len(dataset)  # batch_size

    vid_path, vid_writer = [None] * bs, [None] * bs

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    if pt and device.type != 'cpu':
        model(
            torch.zeros(1, 3, *imgsz).to(device).type_as(
                next(model.model.parameters())))  # warmup
        # global framess_im2

        dt, seen = [0.0, 0.0, 0.0, 0.0], 0
        # arr = None
        past = []
        for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset):

            t1 = time_sync()
            img = torch.from_numpy(img).to(device)
            # print("raw_frame",img.shape)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            t2 = time_sync()
            dt[0] += t2 - t1

            pred = model(img, augment=augment, visualize=visualize)
            t3 = time_sync()
            dt[1] += t3 - t2

            pred = non_max_suppression(pred,
                                       conf_thres,
                                       iou_thres,
                                       classes,
                                       agnostic_nms,
                                       max_det=max_det)
            dt[2] += time_sync() - t3

            # Process detections

            # dets_per_img = []
            for i, det in enumerate(pred):  # detections per image
                seen += 1
                if webcam:  # batch_size >= 1
                    p, im0, _ = path[i], im0s[i].copy(), dataset.count

                    s += f'{i}: '
                else:
                    p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)

                annotator = Annotator(im0, line_width=2, pil=not ascii)

                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                    xywhs = xyxy2xywh(det[:, 0:4])
                    confs = det[:, 4]
                    clss = det[:, 5]

                    # pass detections to deepsort
                    t4 = time_sync()
                    outputs = deepsort.update(xywhs.cpu(), confs.cpu(),
                                              clss.cpu(), im0)
                    t5 = time_sync()
                    dt[3] += t5 - t4

                    if len(outputs) > 0:
                        for j, (output, conf) in enumerate(zip(outputs,
                                                               confs)):
                            bboxes = output[0:4]
                            id = output[4]
                            cls = output[5]

                            c = int(cls)  # integer class
                            label = f'{id} {names[c]} {conf:.2f}'
                            annotator.box_label(bboxes,
                                                label,
                                                color=colors(c, True))

                            if save_txt:
                                # to MOT format
                                bbox_left = output[0]
                                bbox_top = output[1]
                                bbox_w = output[2] - output[0]
                                bbox_h = output[3] - output[1]
                                # bbox_left = bbox_left + bbox_h
                                bbox_top = bbox_top + bbox_h

                                agent_data = {
                                    'frame': int(frame_idx + 1),
                                    'agent_id': int(id),
                                    "labels": str(names[c]),
                                    "x": int(bbox_left),
                                    "y": int(bbox_top)
                                }

                                print("agent", agent_data)

                                collection.insert_one(agent_data)

                                #db.object_detection.insert_one(agent_data)
                                #db.pedestrian_detection_15_june.insert_one(agent_data)
                                #db.test_21_july.insert_one(agent_data)

                    LOGGER.info(
                        f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)'
                    )

                else:
                    deepsort.increment_ages()
                    LOGGER.info('No detections')

                im0 = annotator.result()
示例#5
0
def run(data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a COCO-JSON results file
        project=ROOT / 'runs/val',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        callbacks=Callbacks(),
        compute_loss=None,
        ):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Load model
        check_suffix(weights, '.pt')
        model = attempt_load(weights, map_location=device)  # load FP32 model
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        imgsz = check_img_size(imgsz, s=gs)  # check image size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

        # Data
        data = check_dataset(data)  # check

    # Half
    half &= device.type != 'cpu'  # half precision only supported on CUDA
    model.half() if half else model.float()

    # Configure
    model.eval()
    is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        if device.type != 'cpu':
            model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
        pad = 0.0 if task == 'speed' else 0.5
        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=pad, rect=True,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95')
    dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
        t1 = time_sync()
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        t2 = time_sync()
        dt[0] += t2 - t1

        # Run model
        out, train_out = model(img, augment=augment)  # inference and training outputs
        dt[1] += time_sync() - t2

        # Compute loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out], targets)[1]  # box, obj, cls

        # Run NMS
        targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
        t3 = time_sync()
        out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
        dt[2] += time_sync() - t3

        # Statistics per image
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path, shape = Path(paths[si]), shapes[si][0]
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred

            # Evaluate
            if nl:
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
                correct = process_batch(predn, labelsn, iouv)
            else:
                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))  # (correct, conf, pcls, tcls)

            # Save/log
            if save_txt:
                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
            if save_json:
                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
            callbacks.run('on_val_image_end', pred, predn, path, names, img[si])

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats, save_dir=save_dir, names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
        anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json')  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            LOGGER.info(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
示例#6
0
def detect(opt):
    memory = {}
    counter = 0
    out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, project, name, exist_ok= \
        opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \
        opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.name, opt.exist_ok
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(deep_sort_model,
                        torch.device("cpu"),
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET)

    # Initialize
    device = select_device(opt.device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
    # its own .txt file. Hence, in that case, the output folder is not restored
    if not evaluate:
        if os.path.exists(out):
            pass
            shutil.rmtree(out)  # delete output folder
        os.makedirs(out)  # make new output folder

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    save_dir.mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn)
    stride, names, pt, jit, _ = model.stride, model.names, model.pt, model.jit, model.onnx
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= pt and device.type != 'cpu'  # half precision only supported by PyTorch on CUDA
    if pt:
        model.model.half() if half else model.model.float()

    # Set Dataloader
    vid_path, vid_writer = None, None
    # Check if environment supports image displays
    if show_vid:
        show_vid = check_imshow()

    # Dataloader
    if webcam:
        show_vid = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source,
                              img_size=imgsz,
                              stride=stride,
                              auto=pt and not jit)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source,
                             img_size=imgsz,
                             stride=stride,
                             auto=pt and not jit)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # extract what is in between the last '/' and last '.'
    txt_file_name = source.split('/')[-1].split('.')[0]
    txt_path = str(Path(save_dir)) + '/' + txt_file_name + '.txt'

    if pt and device.type != 'cpu':
        model(
            torch.zeros(1, 3, *imgsz).to(device).type_as(
                next(model.model.parameters())))  # warmup
    dt, seen = [0.0, 0.0, 0.0, 0.0], 0
    regionid = set()
    for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset):
        t1 = time_sync()
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem,
                                   mkdir=True) if opt.visualize else False
        pred = model(img, augment=opt.augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   opt.classes,
                                   opt.agnostic_nms,
                                   max_det=opt.max_det)
        dt[2] += time_sync() - t3
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, _ = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg, vid.mp4, ...
            s += '%gx%g ' % img.shape[2:]  # print string

            annotator = Annotator(im0,
                                  line_width=2,
                                  font='Arial.ttf',
                                  pil=not ascii)

            if det is not None and len(det):
                tboxes = []
                indexIDs = []
                previous = memory.copy()
                memory = {}
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                xywhs = xyxy2xywh(det[:, 0:4])
                confs = det[:, 4]
                clss = det[:, 5]

                # pass detections to deepsort
                t4 = time_sync()
                outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(),
                                          im0)
                t5 = time_sync()
                dt[3] += t5 - t4

                # draw boxes for visualization
                if len(outputs) > 0:
                    for j, (output, conf) in enumerate(zip(outputs, confs)):

                        bboxes = output[0:4]
                        id = output[4]
                        cls = output[5]
                        roi = [(0, 0), (640, 0), (640, 380), (0, 380)]

                        (x, y) = (int(bboxes[0]), int(bboxes[1]))
                        (w, h) = (int(bboxes[2]), int(bboxes[3]))
                        inside = cv2.pointPolygonTest(np.array(roi), (x, h),
                                                      False)
                        if inside > 0:
                            regionid.add(id)

                        c = int(cls)  # integer class
                        label = f' {names[c]} {conf:.2f}'
                        cv2.putText(im0, "count =" + str(len(regionid)),
                                    (20, 50), 0, 1, (100, 200, 0), 2)
                        annotator.box_label(bboxes,
                                            label,
                                            color=colors(c, True))
                        if save_txt:
                            # to MOT format
                            bbox_left = output[0]
                            bbox_top = output[1]
                            bbox_w = output[2] - output[0]
                            bbox_h = output[3] - output[1]
                            # Write MOT compliant results to file
                            with open(txt_path, 'a') as f:
                                f.write(('%g ' * 10 + '\n') % (
                                    frame_idx + 1,
                                    id,
                                    bbox_left,  # MOT format
                                    bbox_top,
                                    bbox_w,
                                    bbox_h,
                                    -1,
                                    -1,
                                    -1,
                                    -1))

                LOGGER.info(
                    f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)'
                )
                LOGGER.info(f'counter = {len(regionid)}')

            else:
                deepsort.increment_ages()
                LOGGER.info('No detections')

            # Stream results
            im0 = annotator.result()
            if show_vid:
                cv2.imshow(str(p), im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_vid:
                if vid_path != save_path:  # new video
                    vid_path = save_path
                    if isinstance(vid_writer, cv2.VideoWriter):
                        vid_writer.release()  # release previous video writer
                    if vid_cap:  # video
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    else:  # stream
                        fps, w, h = 30, im0.shape[1], im0.shape[0]

                    vid_writer = cv2.VideoWriter(
                        save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                        (w, h))
                vid_writer.write(im0)

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \
        per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_vid:
        print('Results saved to %s' % save_path)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)
示例#7
0
def detect(opt):
    out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, \
        project, exist_ok, update, save_crop = \
        opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \
        opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.exist_ok, opt.update, opt.save_crop
    webcam = source == '0' or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    device = select_device(opt.device)
    half &= device.type != 'cpu'  # half precision only supported on CUDA

    # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
    # its own .txt file. Hence, in that case, the output folder is not restored
    if not evaluate:
        if os.path.exists(out):
            pass
            shutil.rmtree(out)  # delete output folder
        os.makedirs(out)  # make new output folder

    # Directories
    if type(yolo_model) is str:  # single yolo model
        exp_name = yolo_model.split(".")[0]
    elif type(yolo_model) is list and len(yolo_model) == 1:  # single models after --yolo_model
        exp_name = yolo_model[0].split(".")[0]
    else:  # multiple models after --yolo_model
        exp_name = "ensemble"
    exp_name = exp_name + "_" + deep_sort_model.split('/')[-1].split('.')[0]
    save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok)  # increment run if project name exists
    (save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= pt and device.type != 'cpu'  # half precision only supported by PyTorch on CUDA
    if pt:
        model.model.half() if half else model.model.float()

    # Set Dataloader
    vid_path, vid_writer = None, None
    # Check if environment supports image displays
    if show_vid:
        show_vid = check_imshow()

    # Dataloader
    if webcam:
        show_vid = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        nr_sources = len(dataset)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        nr_sources = 1
    vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)

    # Create as many trackers as there are video sources
    deepsort_list = []
    for i in range(nr_sources):
        deepsort_list.append(
            DeepSort(
                deep_sort_model,
                device,
                max_dist=cfg.DEEPSORT.MAX_DIST,
                max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
            )
        )
    outputs = [None] * nr_sources

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run tracking
    model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz))  # warmup
    dt, seen = [0.0, 0.0, 0.0, 0.0], 0
    for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255.0  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if opt.visualize else False
        pred = model(im, augment=opt.augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det)
        dt[2] += time_sync() - t3

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            seen += 1
            if webcam:  # nr_sources >= 1
                p, im0, _ = path[i], im0s[i].copy(), dataset.count
                p = Path(p)  # to Path
                s += f'{i}: '
                txt_file_name = p.name
                save_path = str(save_dir / p.name)  # im.jpg, vid.mp4, ...
            else:
                p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
                p = Path(p)  # to Path
                # video file
                if source.endswith(VID_FORMATS):
                    txt_file_name = p.stem
                    save_path = str(save_dir / p.name)  # im.jpg, vid.mp4, ...
                # folder with imgs
                else:
                    txt_file_name = p.parent.name  # get folder name containing current img
                    save_path = str(save_dir / p.parent.name)  # im.jpg, vid.mp4, ...

            txt_path = str(save_dir / 'tracks' / txt_file_name)  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            imc = im0.copy() if save_crop else im0  # for save_crop

            annotator = Annotator(im0, line_width=2, pil=not ascii)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                xywhs = xyxy2xywh(det[:, 0:4])
                confs = det[:, 4]
                clss = det[:, 5]

                # pass detections to deepsort
                t4 = time_sync()
                outputs[i] = deepsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
                t5 = time_sync()
                dt[3] += t5 - t4

                # draw boxes for visualization
                if len(outputs[i]) > 0:
                    for j, (output, conf) in enumerate(zip(outputs[i], confs)):

                        bboxes = output[0:4]
                        id = output[4]
                        cls = output[5]

                        if save_txt:
                            # to MOT format
                            bbox_left = output[0]
                            bbox_top = output[1]
                            bbox_w = output[2] - output[0]
                            bbox_h = output[3] - output[1]
                            # Write MOT compliant results to file
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left,  # MOT format
                                                               bbox_top, bbox_w, bbox_h, -1, -1, -1, i))

                        if save_vid or save_crop or show_vid:  # Add bbox to image
                            c = int(cls)  # integer class
                            label = f'{id} {names[c]} {conf:.2f}'
                            annotator.box_label(bboxes, label, color=colors(c, True))
                            if save_crop:
                                txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
                                save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)

                LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)')

            else:
                deepsort_list[i].increment_ages()
                LOGGER.info('No detections')

            # Stream results
            im0 = annotator.result()
            if show_vid:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_vid:
                if vid_path[i] != save_path:  # new video
                    vid_path[i] = save_path
                    if isinstance(vid_writer[i], cv2.VideoWriter):
                        vid_writer[i].release()  # release previous video writer
                    if vid_cap:  # video
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    else:  # stream
                        fps, w, h = 30, im0.shape[1], im0.shape[0]
                    save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                    vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                vid_writer[i].write(im0)

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \
        per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_vid:
        s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(yolo_model)  # update model (to fix SourceChangeWarning)
示例#8
0
文件: yolo.py 项目: TL-System/plato
    def test_model(self, config, testset):  # pylint: disable=unused-argument
        """The testing loop for YOLOv5.

        Arguments:
            config: Configuration parameters as a dictionary.
            testset: The test dataset.
        """
        assert Config().data.datasource == 'YOLO'
        test_loader = yolo.DataSource.get_test_loader(config['batch_size'],
                                                      testset)

        device = next(self.model.parameters()).device  # get model device

        # Configure
        self.model.eval()
        with open(Config().data.data_params) as f:
            data = yaml.load(f, Loader=yaml.SafeLoader)  # model dict
        check_dataset(data)  # check
        nc = Config().data.num_classes  # number of classes
        iouv = torch.linspace(0.5, 0.95,
                              10).to(device)  # iou vector for [email protected]:0.95
        niou = iouv.numel()

        seen = 0
        names = {
            k: v
            for k, v in enumerate(self.model.names if hasattr(
                self.model, 'names') else self.model.module.names)
        }
        s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R',
                                     '[email protected]', '[email protected]:.95')
        dt, p, r, __, mp, mr, map50, map = [
            0.0, 0.0, 0.0
        ], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
        stats, ap = [], []
        pbar = tqdm(
            test_loader,
            desc=s,
            ncols=NCOLS,
            bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar

        for __, (img, targets, paths, shapes) in enumerate(pbar):
            t1 = time_sync()
            img = img.to(device, non_blocking=True).float()
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            targets = targets.to(device)
            __, __, height, width = img.shape  # batch size, channels, height, width
            t2 = time_sync()
            dt[0] += t2 - t1

            with torch.no_grad():
                # Run model
                if Config().algorithm.type == 'mistnet':
                    logits = self.model.forward_to(img)
                    logits = logits.cpu().detach().numpy()
                    logits = unary_encoding.encode(logits)
                    logits = torch.from_numpy(logits.astype('float32'))
                    out, __ = self.model.forward_from(logits.to(device))
                else:
                    out, __ = self.model(img)

                # Run NMS
                targets[:,
                        2:] *= torch.Tensor([width, height, width,
                                             height]).to(device)  # to pixels

                lb = []  # for autolabelling
                out = non_max_suppression(out,
                                          conf_thres=0.001,
                                          iou_thres=0.6,
                                          labels=lb,
                                          multi_label=True)

            # Metrics
            for si, pred in enumerate(out):
                labels = targets[targets[:, 0] == si, 1:]
                nl = len(labels)
                tcls = labels[:, 0].tolist() if nl else []  # target class
                __, shape = Path(paths[si]), shapes[si][0]
                seen += 1

                if len(pred) == 0:
                    if nl:
                        stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                      torch.Tensor(), torch.Tensor(), tcls))
                    continue

                # Predictions
                predn = pred.clone()
                scale_coords(img[si].shape[1:], predn[:, :4], shape,
                             shapes[si][1])  # native-space pred

                # Evaluate
                if nl:
                    tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                    scale_coords(img[si].shape[1:], tbox, shape,
                                 shapes[si][1])  # native-space labels
                    labelsn = torch.cat((labels[:, 0:1], tbox),
                                        1)  # native-space labels
                    correct = self.process_batch(predn, labelsn, iouv)
                else:
                    correct = torch.zeros(pred.shape[0],
                                          niou,
                                          dtype=torch.bool)
                stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:,
                                                                    5].cpu(),
                              tcls))  # (correct, conf, pcls, tcls)

        # Compute metrics
        stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
        if len(stats) and stats[0].any():
            __, __, p, r, __, ap, __ = ap_per_class(*stats,
                                                    plot=False,
                                                    save_dir='',
                                                    names=names)
            ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
            mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
            nt = np.bincount(stats[3].astype(np.int64),
                             minlength=nc)  # number of targets per class
        else:
            nt = torch.zeros(1)

        # Print results
        pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
        print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

        return map50
示例#9
0
def detect(opt):
    out, source, yolo_weights, deep_sort_weights, show_vid, save_vid, save_txt, imgsz, evaluate = \
        opt.output, opt.source, opt.yolo_weights, opt.deep_sort_weights, opt.show_vid, opt.save_vid, \
            opt.save_txt, opt.img_size, opt.evaluate
    webcam = source == '0' or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    attempt_download(deep_sort_weights, repo='mikel-brostrom/Yolov5_DeepSort_Pytorch')
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)

    # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to
    # its own .txt file. Hence, in that case, the output folder is not restored
    if not evaluate:
        if os.path.exists(out):
            pass
            shutil.rmtree(out)  # delete output folder
        os.makedirs(out)  # make new output folder

    half = device.type != 'cpu'  # half precision only supported on CUDA
    # Load model
    model = attempt_load(yolo_weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    # Check if environment supports image displays
    if show_vid:
        show_vid = check_imshow()

    if webcam:
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()

    save_path = str(Path(out))
    # extract what is in between the last '/' and last '.'
    txt_file_name = source.split('/')[-1].split('.')[0]
    txt_path = str(Path(out)) + '/' + txt_file_name + '.txt'

    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_sync()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(
            pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_sync()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            annotator = Annotator(im0, line_width=2, pil=not ascii)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                xywhs = xyxy2xywh(det[:, 0:4])
                confs = det[:, 4]
                clss = det[:, 5]

                # pass detections to deepsort
                outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
                
                # draw boxes for visualization
                if len(outputs) > 0:
                    for j, (output, conf) in enumerate(zip(outputs, confs)): 
                        
                        bboxes = output[0:4]
                        id = output[4]
                        cls = output[5]

                        c = int(cls)  # integer class
                        label = f'{id} {names[c]} {conf:.2f}'
                        annotator.box_label(bboxes, label, color=colors(c, True))

                        if save_txt:
                            # to MOT format
                            bbox_left = output[0]
                            bbox_top = output[1]
                            bbox_w = output[2] - output[0]
                            bbox_h = output[3] - output[1]
                            # Write MOT compliant results to file
                            with open(txt_path, 'a') as f:
                               f.write(('%g ' * 10 + '\n') % (frame_idx, id, bbox_left,
                                                           bbox_top, bbox_w, bbox_h, -1, -1, -1, -1))  # label format

            else:
                deepsort.increment_ages()

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            im0 = annotator.result()
            if show_vid:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_vid:
                if vid_path != save_path:  # new video
                    vid_path = save_path
                    if isinstance(vid_writer, cv2.VideoWriter):
                        vid_writer.release()  # release previous video writer
                    if vid_cap:  # video
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    else:  # stream
                        fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path += '.mp4'

                    vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                vid_writer.write(im0)

    if save_txt or save_vid:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
示例#10
0
def my_gen():
    # global framess_im2

    dt, seen = [0.0, 0.0, 0.0, 0.0], 0
    # arr = None

    for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset):

        t1 = time_sync()
        img = torch.from_numpy(img).to(device)
        # print("raw_frame",img.shape)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        t2 = time_sync()
        dt[0] += t2 - t1

        pred = model(img, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Process detections

        # dets_per_img = []
        for i, det in enumerate(pred):  # detections per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, _ = path[i], im0s[i].copy(), dataset.count

                s += f'{i}: '
            else:
                p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)

            annotator = Annotator(im0, line_width=2, pil=not ascii)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                xywhs = xyxy2xywh(det[:, 0:4])
                confs = det[:, 4]
                clss = det[:, 5]

                # pass detections to deepsort
                t4 = time_sync()
                outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(),
                                          im0)
                t5 = time_sync()
                dt[3] += t5 - t4

                dets_per_img = []

                if len(outputs) > 0:
                    for j, (output, conf) in enumerate(zip(outputs, confs)):
                        bboxes = output[0:4]
                        id = output[4]
                        cls = output[5]

                        c = int(cls)  # integer class
                        label = f'{id} {names[c]} {conf:.2f}'
                        annotator.box_label(bboxes,
                                            label,
                                            color=colors(c, True))

                        if save_txt:
                            # to MOT format
                            bbox_left = output[0]
                            bbox_top = output[1]
                            bbox_w = output[2] - output[0]
                            bbox_h = output[3] - output[1]
                            # bbox_left = bbox_left + bbox_h
                            bbox_top = bbox_top + bbox_h

                            pts = np.array([[bbox_left, bbox_top, 1]])
                            arr_per = convert_bev(pts)
                            # print("arr_per_to", arr_per)

                            arr_per = np.append(id, arr_per)
                            # print("arr_per1_to", arr_per1)

                            dets_per_img.append(arr_per)

                LOGGER.info(
                    f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)'
                )

            else:
                deepsort.increment_ages()
                arr_per = None
                dets_per_img = [None, None]
                LOGGER.info('No detections')

            im0 = annotator.result()

            if len(dets_per_img) > 1:
                arr_per = np.stack(dets_per_img).tolist()

            elif len(dets_per_img) == 1:
                arr_per = np.array([dets_per_img[0]])
                # print("not_stack",arr_per)

            elif dets_per_img is None:
                arr_per = None

            if save_vid:

                fps, w, h = 30, im0.shape[1], im0.shape[0]
                cv2.putText(im0, str(frame_idx), (500, 460),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2,
                            cv2.LINE_AA)
                framess = cv2.imencode(
                    '.jpg',
                    im0)[1].tobytes()  # Remove this line for test camera
                if arr_per is None:
                    yield framess
                else:
                    yield framess, arr_per