示例#1
0
    def get_grid_tree(self):

        left_edge = np.zeros((self.num_grids, 3))
        right_edge = np.zeros((self.num_grids, 3))
        level = np.zeros((self.num_grids), dtype="int64")
        parent_ind = np.zeros((self.num_grids), dtype="int64")
        num_children = np.zeros((self.num_grids), dtype="int64")
        dimensions = np.zeros((self.num_grids, 3), dtype="int32")

        for i, grid in enumerate(self.grids):

            left_edge[i, :] = grid.LeftEdge
            right_edge[i, :] = grid.RightEdge
            level[i] = grid.Level
            if grid.Parent is None:
                parent_ind[i] = -1
            else:
                parent_ind[i] = grid.Parent.id - grid.Parent._id_offset
            num_children[i] = np.int64(len(grid.Children))
            dimensions[i, :] = grid.ActiveDimensions

        return GridTree(
            self.num_grids,
            left_edge,
            right_edge,
            dimensions,
            parent_ind,
            level,
            num_children,
        )
示例#2
0
def assign_particle_data(ds, pdata, bbox):
    """
    Assign particle data to the grids using MatchPointsToGrids. This
    will overwrite any existing particle data, so be careful!
    """

    particle_index_fields = [
        f"particle_position_{ax}" for ax in ds.coordinates.axis_order
    ]
    for ptype in ds.particle_types_raw:
        check_fields = [(ptype, pi_field)
                        for pi_field in particle_index_fields]
        check_fields.append((ptype, "particle_position"))
        if all(f not in pdata for f in check_fields):
            pdata_ftype = {}
            for f in [k for k in sorted(pdata)]:
                if not hasattr(pdata[f], "shape"):
                    continue
                if f == "number_of_particles":
                    continue
                mylog.debug("Reassigning '%s' to ('%s','%s')", f, ptype, f)
                pdata_ftype[ptype, f] = pdata.pop(f)
            pdata_ftype.update(pdata)
            pdata = pdata_ftype

    # Note: what we need to do here is a bit tricky.  Because occasionally this
    # gets called before we property handle the field detection, we cannot use
    # any information about the index.  Fortunately for us, we can generate
    # most of the GridTree utilizing information we already have from the
    # stream handler.

    if len(ds.stream_handler.fields) > 1:
        pdata.pop("number_of_particles", None)
        num_grids = len(ds.stream_handler.fields)
        parent_ids = ds.stream_handler.parent_ids
        num_children = np.zeros(num_grids, dtype="int64")
        # We're going to do this the slow way
        mask = np.empty(num_grids, dtype="bool")
        for i in range(num_grids):
            np.equal(parent_ids, i, mask)
            num_children[i] = mask.sum()
        levels = ds.stream_handler.levels.astype("int64").ravel()
        grid_tree = GridTree(
            num_grids,
            ds.stream_handler.left_edges,
            ds.stream_handler.right_edges,
            ds.stream_handler.dimensions,
            ds.stream_handler.parent_ids,
            levels,
            num_children,
        )

        grid_pdata = []
        for _ in range(num_grids):
            grid = {"number_of_particles": 0}
            grid_pdata.append(grid)
            particle_index_fields = [
                f"particle_position_{ax}" for ax in ds.coordinates.axis_order
            ]

        for ptype in ds.particle_types_raw:
            if (ptype, "particle_position_x") in pdata:
                # we call them x, y, z even though they may be different field names
                x, y, z = (pdata[ptype, pi_field]
                           for pi_field in particle_index_fields)
            elif (ptype, "particle_position") in pdata:
                x, y, z = pdata[ptype, "particle_position"].T
            else:
                raise KeyError(
                    "Cannot decompose particle data without position fields!")
            pts = MatchPointsToGrids(grid_tree, len(x), x, y, z)
            particle_grid_inds = pts.find_points_in_tree()
            (assigned_particles, ) = (particle_grid_inds >= 0).nonzero()
            num_particles = particle_grid_inds.size
            num_unassigned = num_particles - assigned_particles.size
            if num_unassigned > 0:
                eps = np.finfo(x.dtype).eps
                s = np.array([
                    [x.min() - eps, x.max() + eps],
                    [y.min() - eps, y.max() + eps],
                    [z.min() - eps, z.max() + eps],
                ])
                sug_bbox = [
                    [min(bbox[0, 0], s[0, 0]),
                     max(bbox[0, 1], s[0, 1])],
                    [min(bbox[1, 0], s[1, 0]),
                     max(bbox[1, 1], s[1, 1])],
                    [min(bbox[2, 0], s[2, 0]),
                     max(bbox[2, 1], s[2, 1])],
                ]
                mylog.warning(
                    "Discarding %s particles (out of %s) that are outside "
                    "bounding box. Set bbox=%s to avoid this in the future.",
                    num_unassigned,
                    num_particles,
                    sug_bbox,
                )
                particle_grid_inds = particle_grid_inds[assigned_particles]
                x = x[assigned_particles]
                y = y[assigned_particles]
                z = z[assigned_particles]
            idxs = np.argsort(particle_grid_inds)
            particle_grid_count = np.bincount(
                particle_grid_inds.astype("intp"), minlength=num_grids)
            particle_indices = np.zeros(num_grids + 1, dtype="int64")
            if num_grids > 1:
                np.add.accumulate(particle_grid_count.squeeze(),
                                  out=particle_indices[1:])
            else:
                particle_indices[1] = particle_grid_count.squeeze()
            for i, pcount in enumerate(particle_grid_count):
                grid_pdata[i]["number_of_particles"] += pcount
                start = particle_indices[i]
                end = particle_indices[i + 1]
                for key in pdata.keys():
                    if key[0] == ptype:
                        grid_pdata[i][key] = pdata[key][idxs][start:end]

    else:
        grid_pdata = [pdata]

    for pd, gi in zip(grid_pdata, sorted(ds.stream_handler.fields)):
        ds.stream_handler.fields[gi].update(pd)
        ds.stream_handler.particle_types.update(set_particle_types(pd))
        npart = ds.stream_handler.fields[gi].pop("number_of_particles", 0)
        ds.stream_handler.particle_count[gi] = npart