def _ortho_pixelize(self, data_source, field, bounds, size, antialias, dim, periodic): # We should be using fcoords period = self.period[:2].copy() # dummy here period[0] = self.period[self.x_axis[dim]] period[1] = self.period[self.y_axis[dim]] if hasattr(period, 'in_units'): period = period.in_units("code_length").d buff = np.zeros((size[1], size[0]), dtype="f8") finfo = self.ds._get_field_info(field) nodal_flag = finfo.nodal_flag if np.any(nodal_flag): nodal_data = get_nodal_data(data_source, field) coord = data_source.coord.d pixelize_cartesian_nodal(buff, data_source['px'], data_source['py'], data_source['pz'], data_source['pdx'], data_source['pdy'], data_source['pdz'], nodal_data, coord, bounds, int(antialias), period, int(periodic)) else: pixelize_cartesian(buff, data_source['px'], data_source['py'], data_source['pdx'], data_source['pdy'], data_source[field], bounds, int(antialias), period, int(periodic)) return buff
def _ortho_pixelize(self, data_source, field, bounds, size, antialias, dim, periodic): from yt.data_objects.construction_data_containers import YTParticleProj from yt.data_objects.selection_objects.slices import YTSlice from yt.frontends.sph.data_structures import ParticleDataset from yt.frontends.stream.data_structures import StreamParticlesDataset # We should be using fcoords field = data_source._determine_fields(field)[0] finfo = data_source.ds.field_info[field] period = self.period[:2].copy() # dummy here period[0] = self.period[self.x_axis[dim]] period[1] = self.period[self.y_axis[dim]] if hasattr(period, "in_units"): period = period.in_units("code_length").d buff = np.zeros((size[1], size[0]), dtype="f8") particle_datasets = (ParticleDataset, StreamParticlesDataset) is_sph_field = finfo.is_sph_field finfo = self.ds._get_field_info(field) if np.any(finfo.nodal_flag): nodal_data = get_nodal_data(data_source, field) coord = data_source.coord.d pixelize_cartesian_nodal( buff, data_source["px"], data_source["py"], data_source["pz"], data_source["pdx"], data_source["pdy"], data_source["pdz"], nodal_data, coord, bounds, int(antialias), period, int(periodic), ) elif isinstance(data_source.ds, particle_datasets) and is_sph_field: ptype = field[0] if ptype == "gas": ptype = data_source.ds._sph_ptypes[0] px_name = self.axis_name[self.x_axis[dim]] py_name = self.axis_name[self.y_axis[dim]] ounits = data_source.ds.field_info[field].output_units bnds = data_source.ds.arr(bounds, "code_length").tolist() if isinstance(data_source, YTParticleProj): weight = data_source.weight_field le, re = data_source.data_source.get_bbox() xa = self.x_axis[dim] ya = self.y_axis[dim] # If we're not periodic, we need to clip to the boundary edges # or we get errors about extending off the edge of the region. if not self.ds.periodicity[xa]: le[xa] = max(bounds[0], self.ds.domain_left_edge[xa]) re[xa] = min(bounds[1], self.ds.domain_right_edge[xa]) else: le[xa] = bounds[0] re[xa] = bounds[1] if not self.ds.periodicity[ya]: le[ya] = max(bounds[2], self.ds.domain_left_edge[ya]) re[ya] = min(bounds[3], self.ds.domain_right_edge[ya]) else: le[ya] = bounds[2] re[ya] = bounds[3] # We actually need to clip these proj_reg = data_source.ds.region( left_edge=le, right_edge=re, center=data_source.center, data_source=data_source.data_source, ) proj_reg.set_field_parameter("axis", data_source.axis) buff = np.zeros(size, dtype="float64") if weight is None: for chunk in proj_reg.chunks([], "io"): data_source._initialize_projected_units([field], chunk) pixelize_sph_kernel_projection( buff, chunk[ptype, px_name].to("code_length"), chunk[ptype, py_name].to("code_length"), chunk[ptype, "smoothing_length"].to("code_length"), chunk[ptype, "mass"].to("code_mass"), chunk[ptype, "density"].to("code_density"), chunk[field].in_units(ounits), bnds, check_period=int(periodic), period=period, ) # We use code length here, but to get the path length right # we need to multiply by the conversion factor between # code length and the unit system's length unit default_path_length_unit = data_source.ds.unit_system[ "length"] dl_conv = data_source.ds.quan( 1.0, "code_length").to(default_path_length_unit) buff *= dl_conv.v # if there is a weight field, take two projections: # one of field*weight, the other of just weight, and divide them else: weight_buff = np.zeros(size, dtype="float64") buff = np.zeros(size, dtype="float64") wounits = data_source.ds.field_info[weight].output_units for chunk in proj_reg.chunks([], "io"): data_source._initialize_projected_units([field], chunk) data_source._initialize_projected_units([weight], chunk) pixelize_sph_kernel_projection( buff, chunk[ptype, px_name].to("code_length"), chunk[ptype, py_name].to("code_length"), chunk[ptype, "smoothing_length"].to("code_length"), chunk[ptype, "mass"].to("code_mass"), chunk[ptype, "density"].to("code_density"), chunk[field].in_units(ounits), bnds, check_period=int(periodic), period=period, weight_field=chunk[weight].in_units(wounits), ) mylog.info( "Making a fixed resolution buffer of (%s) %d by %d", weight, size[0], size[1], ) for chunk in proj_reg.chunks([], "io"): data_source._initialize_projected_units([weight], chunk) pixelize_sph_kernel_projection( weight_buff, chunk[ptype, px_name].to("code_length"), chunk[ptype, py_name].to("code_length"), chunk[ptype, "smoothing_length"].to("code_length"), chunk[ptype, "mass"].to("code_mass"), chunk[ptype, "density"].to("code_density"), chunk[weight].in_units(wounits), bnds, check_period=int(periodic), period=period, ) normalization_2d_utility(buff, weight_buff) elif isinstance(data_source, YTSlice): smoothing_style = getattr(self.ds, "sph_smoothing_style", "scatter") normalize = getattr(self.ds, "use_sph_normalization", True) if smoothing_style == "scatter": buff = np.zeros(size, dtype="float64") if normalize: buff_den = np.zeros(size, dtype="float64") for chunk in data_source.chunks([], "io"): pixelize_sph_kernel_slice( buff, chunk[ptype, px_name].to("code_length"), chunk[ptype, py_name].to("code_length"), chunk[ptype, "smoothing_length"].to("code_length"), chunk[ptype, "mass"].to("code_mass"), chunk[ptype, "density"].to("code_density"), chunk[field].in_units(ounits), bnds, check_period=int(periodic), period=period, ) if normalize: pixelize_sph_kernel_slice( buff_den, chunk[ptype, px_name].to("code_length"), chunk[ptype, py_name].to("code_length"), chunk[ptype, "smoothing_length"].to("code_length"), chunk[ptype, "mass"].to("code_mass"), chunk[ptype, "density"].to("code_density"), np.ones(chunk[ptype, "density"].shape[0]), bnds, check_period=int(periodic), period=period, ) if normalize: normalization_2d_utility(buff, buff_den) if smoothing_style == "gather": # Here we find out which axis are going to be the "x" and # "y" axis for the actual visualisation and then we set the # buffer size and bounds to match. The z axis of the plot # is the axis we slice over and the buffer will be of size 1 # in that dimension x, y, z = self.x_axis[dim], self.y_axis[dim], dim buff_size = np.zeros(3, dtype="int64") buff_size[x] = size[0] buff_size[y] = size[1] buff_size[z] = 1 buff_bounds = np.zeros(6, dtype="float64") buff_bounds[2 * x:2 * x + 2] = bounds[0:2] buff_bounds[2 * y:2 * y + 2] = bounds[2:4] buff_bounds[2 * z] = data_source.coord buff_bounds[2 * z + 1] = data_source.coord # then we do the interpolation buff_temp = np.zeros(buff_size, dtype="float64") fields_to_get = [ "particle_position", "density", "mass", "smoothing_length", field[1], ] all_fields = all_data(self.ds, ptype, fields_to_get, kdtree=True) num_neighbors = getattr(self.ds, "num_neighbors", 32) interpolate_sph_grid_gather( buff_temp, all_fields["particle_position"].to("code_length"), buff_bounds, all_fields["smoothing_length"].to("code_length"), all_fields["mass"].to("code_mass"), all_fields["density"].to("code_density"), all_fields[field[1]].in_units(ounits), self.ds.index.kdtree, num_neigh=num_neighbors, use_normalization=normalize, ) # We swap the axes back so the axis which was sliced over # is the last axis, as this is the "z" axis of the plots. if z != 2: buff_temp = buff_temp.swapaxes(2, z) if x == 2: x = z else: y = z buff = buff_temp[:, :, 0] # Then we just transpose if the buffer x and y are # different than the plot x and y if y < x: buff = buff.transpose() else: raise NotImplementedError( "A pixelization routine has not been implemented for %s " "data objects" % str(type(data_source))) buff = buff.transpose() else: pixelize_cartesian( buff, data_source["px"], data_source["py"], data_source["pdx"], data_source["pdy"], data_source[field], bounds, int(antialias), period, int(periodic), ) return buff