'parameters': {} }] } })) # Add a trainer training_pipeline.add_trainer( TFFeedForwardTrainer(loss='binary_crossentropy', last_activation='sigmoid', output_units=1, metrics=['accuracy'], epochs=20)) # Add an evaluator training_pipeline.add_evaluator( TFMAEvaluator( slices=[['has_diabetes']], metrics={'has_diabetes': ['binary_crossentropy', 'binary_accuracy']})) # Run the pipeline locally training_pipeline.run() # See schema of data training_pipeline.view_schema() # See statistics of train and eval training_pipeline.view_statistics() # Creates a notebook for evaluation training_pipeline.evaluate()
metrics={'has_diabetes': ['binary_crossentropy', 'binary_accuracy']})) # Run the pipeline locally training_pipeline.run() ###################### # DO SOME EVALUATION # ###################### # Sample data df = training_pipeline.sample_transformed_data() print(df.shape) print(df.describe()) # See schema of data and detect drift print(training_pipeline.view_schema()) ########################## # CREATE SECOND PIPELINE # ########################## training_pipeline_2 = training_pipeline.copy('Experiment 2') training_pipeline_2.add_trainer(TFFeedForwardTrainer( loss='binary_crossentropy', last_activation='sigmoid', output_units=1, metrics=['accuracy'], epochs=15)) training_pipeline_2.run() ############################ # DO SOME REPOSITORY STUFF #