示例#1
0
    def resolve_uri_locally(self, artifact_uri: Text, path: Text = None):
        """
        Takes a URI that points within the artifact store, downloads the
        URI locally, then returns local URI.

        Args:
            artifact_uri: uri to artifact.
            path: optional path to download to. If None, is inferred.
        """
        if not path_utils.is_remote(artifact_uri):
            # Its already local
            return artifact_uri

        if path is None:
            path = os.path.join(
                GlobalConfig.get_config_dir(),
                self.unique_id,
                ArtifactStore.get_component_name_from_uri(artifact_uri),
                path_utils.get_parent(artifact_uri)  # unique ID from MLMD
            )

        # Create if not exists and download
        path_utils.create_dir_recursive_if_not_exists(path)
        path_utils.copy_dir(artifact_uri, path, overwrite=True)

        return path
示例#2
0
    def run_fn(self):
        train_dataset = self.input_fn(self.train_files,
                                      self.tf_transform_output)

        eval_dataset = self.input_fn(self.eval_files, self.tf_transform_output)

        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        model = self.model_fn(train_dataset, eval_dataset)

        model.to(device)
        criterion = nn.BCEWithLogitsLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.001)

        model.train()
        for e in range(1, self.epoch + 1):
            epoch_loss = 0
            epoch_acc = 0
            step_count = 0
            for x, y in train_dataset:
                step_count += 1
                X_batch, y_batch = x.to(device), y.to(device)
                optimizer.zero_grad()
                y_pred = model(X_batch)

                loss = criterion(y_pred, y_batch)
                acc = binary_acc(y_pred, y_batch)

                loss.backward()
                optimizer.step()

                epoch_loss += loss.item()
                epoch_acc += acc.item()

            print(f'Epoch {e + 0:03}: | Loss: '
                  f'{epoch_loss / step_count:.5f} | Acc: '
                  f'{epoch_acc / step_count:.3f}')

        path_utils.create_dir_if_not_exists(self.serving_model_dir)
        if path_utils.is_remote(self.serving_model_dir):
            temp_model_dir = '__temp_model_dir__'
            temp_path = os.path.join(os.getcwd(), temp_model_dir)
            if path_utils.is_dir(temp_path):
                raise PermissionError('{} is used as a temp path but it '
                                      'already exists. Please remove it to '
                                      'continue.')
            torch.save(model, temp_path)
            path_utils.copy_dir(temp_path, self.serving_model_dir)
            path_utils.rm_dir(temp_path)
        else:
            torch.save(model, os.path.join(self.serving_model_dir, 'model.pt'))
示例#3
0
    def run_fn(self):
        train_dataset = self.input_fn(self.train_files,
                                      self.tf_transform_output)

        eval_dataset = self.input_fn(self.eval_files, self.tf_transform_output)

        class LitModel(pl.LightningModule):
            def __init__(self):
                super().__init__()
                self.l1 = torch.nn.Linear(8, 64)
                self.layer_out = torch.nn.Linear(64, 1)

            def forward(self, x):
                x = torch.relu(self.l1(x))
                x = self.layer_out(x)
                return x

            def training_step(self, batch, batch_idx):
                x, y = batch
                y_hat = self(x)
                loss = F.binary_cross_entropy_with_logits(y_hat, y)
                tensorboard_logs = {'train_loss': loss}
                return {'loss': loss, 'log': tensorboard_logs}

            def configure_optimizers(self):
                return torch.optim.Adam(self.parameters(), lr=0.001)

            def train_dataloader(self):
                return train_dataset

            def validation_step(self, batch, batch_idx):
                x, y = batch
                y_hat = self(x)
                return {
                    'val_loss': F.binary_cross_entropy_with_logits(y_hat, y)
                }

            def validation_epoch_end(self, outputs):
                avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean()
                tensorboard_logs = {'val_loss': avg_loss}
                return {'avg_val_loss': avg_loss, 'log': tensorboard_logs}

            def val_dataloader(self):
                return eval_dataset

        model = LitModel()

        # most basic trainer, uses good defaults
        trainer = Trainer(
            default_root_dir=self.log_dir,
            max_epochs=self.epoch,
        )
        trainer.fit(model)

        path_utils.create_dir_if_not_exists(self.serving_model_dir)
        if path_utils.is_remote(self.serving_model_dir):
            temp_model_dir = '__temp_model_dir__'
            temp_path = os.path.join(os.getcwd(), temp_model_dir)
            if path_utils.is_dir(temp_path):
                raise PermissionError('{} is used as a temp path but it '
                                      'already exists. Please remove it to '
                                      'continue.')
            trainer.save_checkpoint(os.path.join(temp_path, 'model.cpkt'))
            path_utils.copy_dir(temp_path, self.serving_model_dir)
            path_utils.rm_dir(temp_path)
        else:
            trainer.save_checkpoint(
                os.path.join(self.serving_model_dir, 'model.ckpt'))
示例#4
0
    def run_fn(self):
        train_dataset = self.input_fn(self.train_files,
                                      self.tf_transform_output)

        eval_dataset = self.input_fn(self.eval_files,
                                     self.tf_transform_output)

        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        model = self.model_fn(train_dataset, eval_dataset)

        model.to(device)
        criterion = nn.BCEWithLogitsLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.001)

        writer = SummaryWriter(self.log_dir)

        model.train()

        total_count = 0

        for e in range(1, self.epochs + 1):
            epoch_loss = 0
            epoch_acc = 0
            step_count = 0
            for x, y, _ in train_dataset:
                step_count += 1
                total_count += 1

                x_batch = torch.cat([v.to(device) for v in x.values()], dim=-1)
                y_batch = torch.cat([v.to(device) for v in y.values()], dim=-1)
                optimizer.zero_grad()

                y_pred = model(x_batch)

                loss = criterion(y_pred, y_batch)
                acc = binary_acc(y_pred, y_batch)

                loss.backward()
                optimizer.step()

                epoch_loss += loss.item()
                epoch_acc += acc.item()

                if e == 1 and step_count == 1:
                    writer.add_graph(model, x_batch)

                writer.add_scalar('training_loss', loss, total_count)
                writer.add_scalar('training_accuracy', acc, total_count)

            print(f'Epoch {e + 0:03}: | Loss: '
                  f'{epoch_loss / step_count:.5f} | Acc: '
                  f'{epoch_acc / step_count:.3f}')

        # test
        test_results = self.test_fn(model, eval_dataset)
        utils.save_test_results(test_results, self.test_results)

        path_utils.create_dir_if_not_exists(self.serving_model_dir)
        if path_utils.is_remote(self.serving_model_dir):
            temp_model_dir = '__temp_model_dir__'
            temp_path = os.path.join(os.getcwd(), temp_model_dir)
            if path_utils.is_dir(temp_path):
                raise PermissionError('{} is used as a temp path but it '
                                      'already exists. Please remove it to '
                                      'continue.')
            torch.save(model, temp_path)
            path_utils.copy_dir(temp_path, self.serving_model_dir)
            path_utils.rm_dir(temp_path)
        else:
            torch.save(model, os.path.join(self.serving_model_dir, 'model.pt'))