def test_unstabilized_weights(self): df = load_sample_data(False) ipm = IPMW(df, missing_variable='dead', stabilized=False) ipm.regression_models(model_denominator='male + age0 + dvl0 + cd40') ipm.fit() npt.assert_allclose(np.mean(ipm.Weight), 1.0579602715) npt.assert_allclose(np.std(ipm.Weight, ddof=1), 0.021019729152)
def test_nonmonotone_detection(self): df = pd.DataFrame() df['a'] = [0, 0, np.nan] df['b'] = [np.nan, 0, 1] ipm = IPMW(df, missing_variable=['a', 'b']) with pytest.raises(ValueError): ipm.regression_models(model_denominator=['b', 'a'])
def test_stabilized_weights(self): df = load_sample_data(False) ipm = IPMW(df, missing_variable='dead', stabilized=True) ipm.regression_models(model_denominator='male + age0 + dvl0 + cd40') ipm.fit() npt.assert_allclose(np.mean(ipm.Weight), 0.99993685627) npt.assert_allclose(np.std(ipm.Weight, ddof=1), 0.019866910369)
def test_error_numerator_with_unstabilized(self): df = load_sample_data(False) ipm = IPMW(df, missing_variable='dead', stabilized=False) with pytest.raises(ValueError): ipm.regression_models( model_denominator='male + age0 + dvl0 + cd40', model_numerator='male')
def test_weighted_model(self): df = load_sample_data(False).drop(columns=['dead']) df['age_sq'] = df['age0'] ** 2 df['age_cu'] = df['age0'] ** 3 df['cd4_sq'] = df['cd40'] ** 2 df['cd4_cu'] = df['cd40'] ** 3 ipmw = IPMW(df, missing_variable='cd4_wk45') ipmw.regression_models('art + male + age0 + age_sq + age_cu + cd40 + cd4_sq + cd4_cu + dvl0', print_results=False) ipmw.fit() df['ipcw'] = ipmw.Weight snm = GEstimationSNM(df.dropna(), exposure='art', outcome='cd4_wk45', weights='ipcw') snm.exposure_model('male + age0 + age_sq + age_cu + cd40 + cd4_sq + cd4_cu + dvl0', print_results=False) snm.structural_nested_model('art') snm.fit() npt.assert_allclose(snm.psi, [244.379181], atol=1e-5) snm = GEstimationSNM(df.dropna(), exposure='art', outcome='cd4_wk45', weights='ipcw') snm.exposure_model('male + age0 + age_sq + age_cu + cd40 + cd4_sq + cd4_cu + dvl0', print_results=False) snm.structural_nested_model('art') snm.fit(solver='search') npt.assert_allclose(snm.psi, [244.379181], atol=1e-5)
def test_single_model_does_not_break(self): df = load_monotone_missing_data() ipm = IPMW(df, missing_variable=['B', 'C'], stabilized=False, monotone=True) ipm.regression_models(model_denominator='L') ipm.fit() x = ipm.Weight
def test_monotone_example(self): # TODO find R or SAS to test against df = load_monotone_missing_data() ipm = IPMW(df, missing_variable=['B', 'C'], stabilized=False, monotone=True) ipm.regression_models(model_denominator=['L + A', 'L + B']) ipm.fit() df['w'] = ipm.Weight dfs = df.dropna(subset=['w']) npt.assert_allclose(np.average(dfs['B'], weights=dfs['w']), 0.41877344861340654) npt.assert_allclose(np.average(dfs['C'], weights=dfs['w']), 0.5637116735464095)
def test_error_too_many_model(self): df = load_sample_data(False) ipm = IPMW(df, missing_variable='dead') with pytest.raises(ValueError): ipm.regression_models( model_denominator=['male + age0', 'male + age0 + dvl0'])
def test_missing_count2(self): df = load_sample_data(False) ipm = IPMW(df, missing_variable='dead', stabilized=True) ipm.regression_models(model_denominator='art') assert 517 == np.sum(ipm.df['_observed_indicator_']) assert 30 == np.sum(1 - ipm.df['_observed_indicator_'])
def test_missing_count(self, mdata): ipm = IPMW(mdata, missing_variable='M', stabilized=True) ipm.regression_models(model_denominator='A') assert 6 == np.sum(ipm.df['_observed_indicator_']) assert 4 == np.sum(1 - ipm.df['_observed_indicator_'])