def test_match_openepi_sampledata(self): oe_irr = -0.001055 oe_ci = -0.003275, 0.001166 df = ze.load_sample_data(False) ird = IncidenceRateDifference() ird.fit(df, exposure='art', outcome='dead', time='t') npt.assert_allclose(ird.incidence_rate_difference[1], oe_irr, atol=1e-5) rf = ird.results npt.assert_allclose(rf.loc[rf.index == '1'][['IRD_LCL', 'IRD_UCL']], [oe_ci], atol=1e-5)
def test_multiple_exposures(self): df = pd.DataFrame() df['exp'] = [1]*50 + [0]*50 + [2]*50 df['dis'] = [1]*25 + [0]*25 + [1]*25 + [0]*25 + [1]*25 + [0]*25 df['t'] = 2 ird = IncidenceRateDifference() ird.fit(df, exposure='exp', outcome='dis', time='t') assert ird.results.shape[0] == 3 assert list(ird.results.index) == ['Ref:0', '1', '2']
def measures_check(): # 7) Check measures plots data_set = load_sample_data(False) rr = RiskRatio() rr.fit(data_set, exposure='art', outcome='dead') rr.plot(fmt='*', ecolor='r', barsabove=True, markersize=25) plt.show() rd = RiskDifference() rd.fit(data_set, exposure='art', outcome='dead') rd.plot() plt.show() ord = OddsRatio() ord.fit(data_set, exposure='art', outcome='dead') ord.plot() plt.show() irr = IncidenceRateRatio() irr.fit(data_set, exposure='art', outcome='dead', time='t') irr.plot() plt.show() ird = IncidenceRateDifference() ird.fit(data_set, exposure='art', outcome='dead', time='t') ird.plot() plt.show()
def test_incidence_rate_difference_reference_equal_to_0(self, time_data): ird = IncidenceRateDifference() ird.fit(time_data, exposure='exp', outcome='dis', time='t') assert ird.incidence_rate_difference[0] == 0