示例#1
0
def compare_per_nt(file1, file2, y_label='New'):
    nt1, data1 = list(read_jsons(file1))
    nt2, data2 = list(read_jsons(file2))
    assert nt1 == nt2
    nt = nt1
    data1 = np.array(data1)
    data2 = np.array(data2)
    diff = data2 - data1

    ind = np.arange(len(nt))
    p1 = plt.bar(ind, data1)
    for bar in p1:
        bar.set_facecolor(COLOR_BASE)

    p2 = plt.bar(ind, diff, bottom=data1)

    for id, bar in enumerate(p2):
        if diff[id] >= 0:
            bar.set_facecolor(COLOR_GREEN)
        else:
            bar.set_facecolor(COLOR_RED)

    custom_lines = [Line2D([0], [0], color=COLOR_BASE, lw=4),
                    Line2D([0], [0], color=COLOR_GREEN, lw=4),
                    Line2D([0], [0], color=COLOR_RED, lw=4)]
    plt.legend(custom_lines, ['База', 'Улучшение', 'Ухудшение'])

    # plt.legend((p1[0], p2[0]), (file1, file2))
    add_nt_x_ticks(nt)

    plt.ylabel(y_label, fontsize=12)
    plt.show()
示例#2
0
def compare_per_nt_diff_only(file1, file2, y_label='New'):
    nt1, data1 = list(read_jsons(file1))
    nt2, data2 = list(read_jsons(file2))
    assert nt1 == nt2

    nt = read_json('data/ast/non_terminals_plot_modified_attention.json')
    assert len(nt1) == len(nt)

    data1 = np.array(data1)
    data2 = np.array(data2)
    diff = data2 - data1

    ind = np.arange(len(nt))
    p1 = plt.bar(ind, (diff) * 100, width=1)

    for id, bar in enumerate(p1):
        if diff[id] >= 0:
            bar.set_facecolor(COLOR_GREEN)
        else:
            bar.set_facecolor(COLOR_RED)

    custom_lines = [
        Line2D([0], [0], color=COLOR_GREEN, lw=4),
        Line2D([0], [0], color=COLOR_RED, lw=4)
    ]
    plt.legend(custom_lines, ['Улучшение', 'Ухудшение'], prop={'size': 16})
    plt.grid(True)

    add_nt_x_ticks(nt)

    plt.ylabel(y_label, fontsize=14)
    plt.show()
示例#3
0
def compare_per_nt(file1, file2, y_label):
    nt1, res1 = list(read_jsons(file1))
    nt2, res2 = list(read_jsons(file2))
    assert nt1 == nt2

    x = np.arange(len(nt1))
    y1 = np.array(res1)
    y2 = np.array(res2)

    my_xticks = nt1
    plt.xticks(x,
               my_xticks,
               rotation=30,
               horizontalalignment='right',
               fontsize=5)
    plt.ylabel(y_label)
    plt.grid(True)

    plt.plot(x, (y2 - y1) * 100)
    plt.show()
示例#4
0
def print_tree_heights_stats_from_file(tree_heights_file):
    print_tree_heights_stats(list(read_jsons(tree_heights_file))[0])
示例#5
0
def plot_percentile_from_file(file, x_label, y_label):
    stat = list(read_jsons(file))[0]
    x, y = get_percentile_plot(stat)
    draw_plot(x, y, x_label=x_label, y_label=y_label)
示例#6
0
def nearest(x, y, vocab, word):
    w_id = -1
    for i in range(len(vocab)):
        if vocab[i] == word:
            w_id = i
    if w_id == -1:
        raise Exception('No such word in vocabulary: {}'.format(word))

    px = x[w_id]
    py = y[w_id]
    p = np.array([px, py])

    points_with_distance = []
    for i in range(len(x)):
        points_with_distance.append(
            (i, np.linalg.norm(np.array([x[i], y[i]]) - p)))

    print('Nearest to {}:'.format(vocab[w_id]))
    for c_p in sorted(points_with_distance, key=lambda x: x[1])[:10]:
        print(vocab[c_p[0]])


if __name__ == '__main__':
    emb = Embeddings(
        vector_file='/Users/zerogerc/Documents/diploma/GloVe/vectors.txt',
        embeddings_size=5)
    vocab = list(read_jsons('data/ast/non_terminals.json'))[0]
    vocab.append('EOF')
    tsne_plot(emb, vocab)
示例#7
0
def draw_per_nt_plot(file, y_label='Per NT accuracy'):
    nt, data = list(read_jsons(file))
    draw_per_nt_plot_inner(nt, Plot(data=data), y_label=y_label)