示例#1
0
def test_gaussian_constraint():
    param_vals = [5, 6, 3]
    observed = [3, 6.1, 4.3]
    sigma = [1, 0.3, 0.7]
    true_val = true_gauss_constr_value(x=observed, mu=param_vals, sigma=sigma)
    assert true_val == true_gauss_constr_value(x=param_vals, mu=observed, sigma=sigma)
    params = [zfit.Parameter(f"Param{i}", val) for i, val in enumerate(param_vals)]

    constr = GaussianConstraint(params=params, observation=observed, uncertainty=sigma)
    constr_np = constr.value().numpy()
    assert constr_np == pytest.approx(true_val)
    assert constr.get_cache_deps() == set(params)

    param_vals[0] = 2
    params[0].set_value(param_vals[0])

    constr2_np = constr.value().numpy()
    constr2_newtensor_np = constr.value().numpy()
    assert constr2_newtensor_np == pytest.approx(constr2_np)

    true_val2 = true_gauss_constr_value(x=param_vals, mu=observed, sigma=sigma)
    assert constr2_np == pytest.approx(true_val2)
    print(true_val2)

    constr.observation[0].set_value(5)
    observed[0] = 5
    print("x: ", param_vals, [p.numpy() for p in params])
    print("mu: ", observed, [p.numpy() for p in constr.observation])
    print("sigma: ", sigma, np.sqrt([p for p in np.diag(constr.covariance)]))
    true_val3 = true_gauss_constr_value(x=param_vals, mu=observed, sigma=sigma)
    constr3_np = constr.value().numpy()
    assert constr3_np == pytest.approx(true_val3)
示例#2
0
def test_gaussian_constraint_matrix():
    param1 = zfit.Parameter("Param1", 5)
    param2 = zfit.Parameter("Param2", 6)
    params = [param1, param2]

    observed = [3., 6.1]
    sigma = np.array([[1, 0.3],
                      [0.3, 0.5]])

    trueval = true_multinormal_constr_value(x=zfit.run(params)[0], mean=observed, cov=sigma)

    constr = GaussianConstraint(params=params, observation=observed, uncertainty=sigma)
    constr_np = zfit.run(constr.value())
    assert constr_np == pytest.approx(trueval)
    #assert constr_np == pytest.approx(3.989638)

    assert constr.get_cache_deps() == set(params)