示例#1
0
    def _loss_func(self, model, data, fit_range, constraints, log_offset):
        nll = super()._loss_func(
            model=model,
            data=data,
            fit_range=fit_range,
            constraints=constraints,
            log_offset=log_offset,
        )
        yields = []
        nevents_collected = []
        for mod, dat in zip(model, data):
            if not mod.is_extended:
                raise NotExtendedPDFError(
                    f"The pdf {mod} is not extended but has to be (for an extended fit)"
                )
            nevents = dat.n_events if dat.weights is None else z.reduce_sum(
                dat.weights)
            nevents = tf.cast(nevents, tf.float64)
            nevents_collected.append(nevents)
            yields.append(mod.get_yield())
        yields = znp.stack(yields, axis=0)
        nevents_collected = znp.stack(nevents_collected, axis=0)

        term_new = tf.nn.log_poisson_loss(nevents_collected, znp.log(yields))
        if log_offset is not None:
            term_new += log_offset
        nll += znp.sum(term_new, axis=0)
        return nll
示例#2
0
文件: tobinned.py 项目: zfit/zfit
    def _rel_counts(self, x, norm):
        pdf = self.pdfs[0]
        edges = [znp.array(edge) for edge in self.axes.edges]
        edges_flat = [znp.reshape(edge, [-1]) for edge in edges]
        lowers = [edge[:-1] for edge in edges_flat]
        uppers = [edge[1:] for edge in edges_flat]
        lowers_meshed = znp.meshgrid(*lowers, indexing="ij")
        uppers_meshed = znp.meshgrid(*uppers, indexing="ij")
        shape = tf.shape(lowers_meshed[0])
        lowers_meshed_flat = [
            znp.reshape(lower_mesh, [-1]) for lower_mesh in lowers_meshed
        ]
        uppers_meshed_flat = [
            znp.reshape(upper_mesh, [-1]) for upper_mesh in uppers_meshed
        ]
        lower_flat = znp.stack(lowers_meshed_flat, axis=-1)
        upper_flat = znp.stack(uppers_meshed_flat, axis=-1)
        options = {"type": "bins"}

        @z.function
        def integrate_one(limits):
            l, u = tf.unstack(limits)
            limits_space = zfit.Space(obs=self.obs, limits=[l, u])
            return pdf.integrate(limits_space, norm=False, options=options)

        limits = znp.stack([lower_flat, upper_flat], axis=1)
        values = tf.vectorized_map(integrate_one, limits)
        values = znp.reshape(values, shape)
        if norm:
            values /= pdf.normalization(norm)
        return values
示例#3
0
文件: unbinnedpdf.py 项目: zfit/zfit
    def _sample(self, n, limits: ZfitSpace):

        pdf = self.pdfs[0]
        # TODO: use real limits, currently not supported in binned sample
        sample = pdf.sample(n=n)

        edges = sample.space.binning.edges
        ndim = len(edges)
        edges = [znp.array(edge) for edge in edges]
        edges_flat = [znp.reshape(edge, [-1]) for edge in edges]
        lowers = [edge[:-1] for edge in edges_flat]
        uppers = [edge[1:] for edge in edges_flat]
        lowers_meshed = znp.meshgrid(*lowers, indexing="ij")
        uppers_meshed = znp.meshgrid(*uppers, indexing="ij")
        lowers_meshed_flat = [
            znp.reshape(lower_mesh, [-1]) for lower_mesh in lowers_meshed
        ]
        uppers_meshed_flat = [
            znp.reshape(upper_mesh, [-1]) for upper_mesh in uppers_meshed
        ]
        lower_flat = znp.stack(lowers_meshed_flat, axis=-1)
        upper_flat = znp.stack(uppers_meshed_flat, axis=-1)

        counts_flat = znp.reshape(sample.values(), (-1, ))
        counts_flat = tf.cast(counts_flat,
                              znp.int32)  # TODO: what if we have fractions?
        lower_flat_repeated = tf.repeat(lower_flat, counts_flat, axis=0)
        upper_flat_repeated = tf.repeat(upper_flat, counts_flat, axis=0)
        sample_unbinned = tf.random.uniform(
            (znp.sum(counts_flat), ndim),
            minval=lower_flat_repeated,
            maxval=upper_flat_repeated,
            dtype=self.dtype,
        )
        return sample_unbinned
示例#4
0
文件: tobinned.py 项目: zfit/zfit
    def _counts(self, x, norm):
        pdf = self.pdfs[0]
        edges = [znp.array(edge) for edge in self.axes.edges]
        edges_flat = [znp.reshape(edge, [-1]) for edge in edges]
        lowers = [edge[:-1] for edge in edges_flat]
        uppers = [edge[1:] for edge in edges_flat]
        lowers_meshed = znp.meshgrid(*lowers, indexing="ij")
        uppers_meshed = znp.meshgrid(*uppers, indexing="ij")
        shape = tf.shape(lowers_meshed[0])
        lowers_meshed_flat = [
            znp.reshape(lower_mesh, [-1]) for lower_mesh in lowers_meshed
        ]
        uppers_meshed_flat = [
            znp.reshape(upper_mesh, [-1]) for upper_mesh in uppers_meshed
        ]
        lower_flat = znp.stack(lowers_meshed_flat, axis=-1)
        upper_flat = znp.stack(uppers_meshed_flat, axis=-1)
        options = {"type": "bins"}

        if pdf.is_extended:

            @z.function
            def integrate_one(limits):
                l, u = tf.unstack(limits)
                limits_space = zfit.Space(obs=self.obs, limits=[l, u])
                return pdf.ext_integrate(limits_space,
                                         norm=False,
                                         options=options)

            missing_yield = False
        else:

            @z.function
            def integrate_one(limits):
                l, u = tf.unstack(limits)
                limits_space = zfit.Space(obs=self.obs, limits=[l, u])
                return pdf.integrate(limits_space, norm=False, options=options)

            missing_yield = True

        limits = znp.stack([lower_flat, upper_flat], axis=1)
        try:
            values = tf.vectorized_map(integrate_one, limits)[:, 0]
        except ValueError:
            values = tf.map_fn(integrate_one, limits)
        values = znp.reshape(values, shape)
        if missing_yield:
            values *= self.get_yield()
        if norm:
            values /= pdf.normalization(norm)
        return values
示例#5
0
    def to_unbinned(self):
        meshed_center = znp.meshgrid(*self.axes.centers, indexing="ij")
        flat_centers = [
            znp.reshape(center, (-1, )) for center in meshed_center
        ]
        centers = znp.stack(flat_centers, axis=-1)
        flat_weights = znp.reshape(self.values(), (-1, ))  # TODO: flow?
        space = self.space.copy(binning=None)
        from zfit import Data

        return Data.from_tensor(obs=space,
                                tensor=centers,
                                weights=flat_weights)
示例#6
0
def spline_interpolator(alpha, alphas, densities):
    alphas = alphas[None, :, None]
    shape = tf.shape(densities[0])
    densities_flat = [znp.reshape(density, [-1]) for density in densities]
    densities_flat = znp.stack(densities_flat, axis=0)
    alpha_shaped = znp.reshape(alpha, [1, -1, 1])
    y_flat = tfa.image.interpolate_spline(
        train_points=alphas,
        train_values=densities_flat[None, ...],
        query_points=alpha_shaped,
        order=2,
    )
    y_flat = y_flat[0, 0]
    y = tf.reshape(y_flat, shape)
    return y
示例#7
0
        def to_minimize_func(values):
            nonlocal current_loss, nan_counter
            do_print = self.verbosity > 8

            is_nan = False
            gradient = None
            value = None
            try:
                gradient, value = update_params_value_grad(
                    loss, params, values)

            except tf.errors.InvalidArgumentError:
                err = "NaNs"
                is_nan = True
            except:
                err = "unknonw error"
                raise
            finally:
                if value is None:
                    value = f"invalid, {err}"
                if gradient is None:
                    gradient = [f"invalid, {err}"] * len(params)
                if do_print:
                    print_gradient(
                        params,
                        run(values),
                        [float(run(g)) for g in gradient],
                        loss=run(value),
                    )
            loss_evaluated = run(value)
            is_nan = is_nan or np.isnan(loss_evaluated)
            if is_nan:
                nan_counter += 1
                info_values = {}
                info_values["loss"] = run(value)
                info_values["old_loss"] = current_loss
                info_values["nan_counter"] = nan_counter
                value = self.strategy.minimize_nan(loss=loss,
                                                   params=params,
                                                   minimizer=self,
                                                   values=info_values)
            else:
                nan_counter = 0
                current_loss = value

            gradient = znp.stack(gradient)
            return value, gradient
示例#8
0
def test_unbinned_data2D():
    n = 751
    gauss, gauss_binned, obs, obs_binned = create_gauss2d_binned(n, 50)

    data = znp.random.uniform([-5, 50], [10, 600], size=(1000, 2))
    y_binned = gauss_binned.pdf(data)
    y_true = gauss.pdf(data)
    max_error = np.max(y_true) / 10
    np.testing.assert_allclose(y_true, y_binned, atol=max_error)

    centers = obs_binned.binning.centers
    X, Y = znp.meshgrid(*centers, indexing="ij")
    centers = znp.stack([znp.reshape(t, (-1,)) for t in (X, Y)], axis=-1)
    ycenter_binned = gauss_binned.pdf(centers)
    ycenter_true = gauss.pdf(centers)
    np.testing.assert_allclose(ycenter_binned, ycenter_true, atol=max_error / 10)

    # for the extended case
    y_binned_ext = gauss_binned.ext_pdf(data)
    y_true_ext = gauss.ext_pdf(data)
    max_error_ext = np.max(y_true_ext) / 10
    np.testing.assert_allclose(y_true_ext, y_binned_ext, atol=max_error_ext)

    ycenter_binned_ext = gauss_binned.ext_pdf(centers)
    ycenter_true_ext = gauss.ext_pdf(centers)
    np.testing.assert_allclose(
        ycenter_binned_ext, ycenter_true_ext, atol=max_error_ext / 10
    )

    x_outside = znp.array([[-7.0, 55], [3.0, 13], [2, 150], [12, 30], [14, 1000]])
    y_outside = gauss_binned.pdf(x_outside)
    assert y_outside[0] == 0
    assert y_outside[1] == 0
    assert y_outside[2] > 0
    assert y_outside[3] == 0
    assert y_outside[4] == 0

    y_outside_ext = gauss_binned.ext_pdf(x_outside)
    assert y_outside_ext[0] == 0
    assert y_outside_ext[1] == 0
    assert y_outside_ext[2] > 0
    assert y_outside_ext[3] == 0
    assert y_outside_ext[4] == 0
示例#9
0
def unbinned_to_binindex(data, space, flow=False):
    if flow:
        warnings.warn(
            "Flow currently not fully supported. Values outside the edges are all 0."
        )
    values = [znp.reshape(data.value(ob), (-1, )) for ob in space.obs]
    edges = [znp.reshape(edge, (-1, )) for edge in space.binning.edges]
    bins = [
        tfp.stats.find_bins(x=val, edges=edge)
        for val, edge in zip(values, edges)
    ]
    stacked_bins = znp.stack(bins, axis=-1)
    if flow:
        stacked_bins += 1
        bin_is_nan = tf.math.is_nan(stacked_bins)
        zeros = znp.zeros_like(stacked_bins)
        binindices = znp.where(bin_is_nan, zeros, stacked_bins)
        stacked_bins = znp.asarray(binindices, dtype=znp.int32)
    return stacked_bins
示例#10
0
 def _ext_pdf(self, x, norm):
     if not self._automatically_extended:
         raise SpecificFunctionNotImplemented
     pdf = self.pdfs[0]
     density = pdf.ext_pdf(x.space, norm=norm)
     density_flat = znp.reshape(density, (-1, ))
     centers_list = znp.meshgrid(*pdf.space.binning.centers, indexing="ij")
     centers_list_flat = [
         znp.reshape(cent, (-1, )) for cent in centers_list
     ]
     centers = znp.stack(centers_list_flat, axis=-1)
     # [None, :, None]  # TODO: only 1 dim now
     probs = tfa.image.interpolate_spline(
         train_points=centers[None, ...],
         train_values=density_flat[None, :, None],
         query_points=x.value()[None, ...],
         order=self.order,
     )
     return probs[0, ..., 0]
示例#11
0
    def _minimize(self, loss, params):
        from .. import run

        minimizer_fn = tfp.optimizer.bfgs_minimize
        params = tuple(params)
        do_print = self.verbosity > 8

        current_loss = None
        nan_counter = 0

        # @z.function
        def update_params_value_grad(loss, params, values):
            for param, value in zip(params, tf.unstack(values, axis=0)):
                param.set_value(value)
            value, gradients = loss.value_gradient(params=params)
            return gradients, value

        def to_minimize_func(values):
            nonlocal current_loss, nan_counter
            do_print = self.verbosity > 8

            is_nan = False
            gradient = None
            value = None
            try:
                gradient, value = update_params_value_grad(
                    loss, params, values)

            except tf.errors.InvalidArgumentError:
                err = "NaNs"
                is_nan = True
            except:
                err = "unknonw error"
                raise
            finally:
                if value is None:
                    value = f"invalid, {err}"
                if gradient is None:
                    gradient = [f"invalid, {err}"] * len(params)
                if do_print:
                    print_gradient(
                        params,
                        run(values),
                        [float(run(g)) for g in gradient],
                        loss=run(value),
                    )
            loss_evaluated = run(value)
            is_nan = is_nan or np.isnan(loss_evaluated)
            if is_nan:
                nan_counter += 1
                info_values = {}
                info_values["loss"] = run(value)
                info_values["old_loss"] = current_loss
                info_values["nan_counter"] = nan_counter
                value = self.strategy.minimize_nan(loss=loss,
                                                   params=params,
                                                   minimizer=self,
                                                   values=info_values)
            else:
                nan_counter = 0
                current_loss = value

            gradient = znp.stack(gradient)
            return value, gradient

        initial_inv_hessian_est = tf.linalg.tensor_diag(
            [p.step_size for p in params])

        minimizer_kwargs = dict(
            initial_position=znp.stack(params),
            x_tol=self.tol,
            # f_relative_tolerance=self.tolerance * 1e-5,  # TODO: use edm for stopping criteria
            initial_inverse_hessian_estimate=initial_inv_hessian_est,
            parallel_iterations=1,
            max_iterations=self.max_calls,
        )
        minimizer_kwargs.update(self.options)
        result = minimizer_fn(to_minimize_func, **minimizer_kwargs)

        # save result
        params_result = run(result.position)
        assign_values(params, values=params_result)

        info = {
            "n_eval": run(result.num_objective_evaluations),
            "n_iter": run(result.num_iterations),
            "grad": run(result.objective_gradient),
            "original": result,
        }
        edm = -999
        fmin = run(result.objective_value)
        status = -999
        converged = run(result.converged)
        params = OrderedDict((p, val) for p, val in zip(params, params_result))
        result = FitResult(
            params=params,
            edm=edm,
            fmin=fmin,
            info=info,
            loss=loss,
            status=status,
            converged=converged,
            minimizer=self.copy(),
        )
        return result