示例#1
0
文件: svar_1.py 项目: eabrasse/etools
            tef_qsv1[ii - 1, tta] += dqsv11[counter]
            counter += 1
        ds.close()

        tta += 1

#%% TEF processing
# first form tidal averages
tef_q0_lp = np.nan * np.ones_like(tef_q0)
tef_q1_lp = np.nan * np.ones_like(tef_q1)
tef_qs0_lp = np.nan * np.ones_like(tef_qs0)
tef_qs1_lp = np.nan * np.ones_like(tef_qs1)
tef_qsv0_lp = np.nan * np.ones_like(tef_qsv0)
tef_qsv1_lp = np.nan * np.ones_like(tef_qsv1)
for ii in range(ns):
    tef_q0_lp[ii, :] = zfun.filt_godin(tef_q0[ii, :])
    tef_q1_lp[ii, :] = zfun.filt_godin(tef_q1[ii, :])
    tef_qs0_lp[ii, :] = zfun.filt_godin(tef_qs0[ii, :])
    tef_qs1_lp[ii, :] = zfun.filt_godin(tef_qs1[ii, :])
    tef_qsv0_lp[ii, :] = zfun.filt_godin(tef_qsv0[ii, :])
    tef_qsv1_lp[ii, :] = zfun.filt_godin(tef_qsv1[ii, :])
if False:
    # this way is BAD: it is sensitive the the number of bins
    # during less-stratified conditions!!
    qin = tef_q0_lp.copy()
    qout = tef_q0_lp.copy()
    qsin = tef_qs0_lp.copy()
    qsout = tef_qs0_lp.copy()
    qsvin = tef_qsv0_lp.copy()
    qsvout = tef_qsv0_lp.copy()
    # then mask for in and out parts (ocean end)
示例#2
0
        style='italic', size=fs+1)
    if rr == 1:
        ax.set_title(infile, size=fs+2)
    if rr < NR:
        ax.set_xticklabels([])
    if rr == NR:
        ax.set_xlabel('Date', size=fs)
    ax.set_ylabel('Z (m)', size=fs)
    ax.tick_params(labelsize=fs-2) # tick labels
    rr += 1

if ('Ntotal' in vn_list) and False:
    # plot total watercolumn N
    dz = np.diff(zw, axis=1)
    Ntotal_A = np.sum(Ntotal*dz, axis=1)
    Ntotal_A_lp = zfun.filt_godin(Ntotal_A)
    Ntotal_A_lp = Ntotal_A_lp[12::24]
    fig2 = plt.figure(figsize=(13,8))
    ax = fig2.add_subplot(111)
    ax.plot(Days, Ntotal_A_lp, '-k')
    ax.set_xlim((Days[0], Days[-1]))
    ax.set_xlabel('Date', size=fs)
    ax.text(.05, .05, 'Integrated Total N: millimole nitrogen meter-3',
        transform=ax.transAxes,
        style='italic', size=fs)
    ax.set_title(infile, size=fs+2)
    ax.tick_params(labelsize=fs-2) # tick labels

plt.show()

示例#3
0
    # data['tef_q'].shape => (8761, 1000), so packed [hour, salinity bin]
    # sbins are packed low to high
    # ot is time in seconds from 1/1/1970
    sbins = tef_ex['sbins']
    ot = tef_ex['ot']
    tef_q = tef_ex['tef_q']
    tef_qs = tef_ex['tef_qs']
    qnet = tef_ex['qnet']
    fnet = tef_ex['fnet']
    ssh = tef_ex['ssh']

    # low-pass
    # tidal averaging
    tef_q_lp = zfun.filt_godin_mat(tef_q)
    tef_qs_lp = zfun.filt_godin_mat(tef_qs)
    qnet_lp = zfun.filt_godin(qnet)
    fnet_lp = zfun.filt_godin(fnet)
    ssh_lp = zfun.filt_godin(ssh)
    pad = 36

    # subsample and cut off nans
    tef_q_lp = tef_q_lp[pad + dd_offset:-(pad+1):24, :]
    tef_qs_lp = tef_qs_lp[pad + dd_offset:-(pad+1):24, :]
    ot = ot[pad + dd_offset:-(pad+1):24]
    qnet_lp = qnet_lp[pad + dd_offset:-(pad+1):24]
    fnet_lp = fnet_lp[pad + dd_offset:-(pad+1):24]
    ssh_lp = ssh_lp[pad + dd_offset:-(pad+1):24]
    
    if counter == 0:
        q0 = tef_q_lp.copy()
    elif counter == 1:
示例#4
0
A[:, 0, 1] = a3
A[:, 1, 1] = a4

to_test = 'godin'

if to_test == 'hanning':
    #  filter each one individually
    aa1 = zfun.filt_hanning(a1)
    aa2 = zfun.filt_hanning(a2)
    aa3 = zfun.filt_hanning(a3)
    aa4 = zfun.filt_hanning(a4)
    # and filter this using the function we are testing
    AA = zfun.filt_hanning_mat(A)
elif to_test == 'godin':
    #  filter each one individually
    aa1 = zfun.filt_godin(a1)
    aa2 = zfun.filt_godin(a2)
    aa3 = zfun.filt_godin(a3)
    aa4 = zfun.filt_godin(a4)
    # and filter this using the function we are testing
    AA = zfun.filt_godin_mat(A)

# PLOTTING
plt.close('all')
fig = plt.figure(figsize=(12, 8))

ax = fig.add_subplot(111)
ax.plot(t,
        aa1,
        '-r',
        t,
示例#5
0
    # ot is time in seconds from 1/1/1970
    sbins = tef_ex['sbins']
    ot = tef_ex['ot']
    tef_q = tef_ex['tef_q']
    tef_qs = tef_ex['tef_qs']
    qnet = tef_ex['qnet']
    qabs = np.abs(qnet)
    fnet = tef_ex['fnet']
    ssh = tef_ex['ssh']

    # low-pass
    if True:
        # tidal averaging
        tef_q_lp = zfun.filt_godin_mat(tef_q)
        tef_qs_lp = zfun.filt_godin_mat(tef_qs)
        qnet_lp = zfun.filt_godin(qnet)
        qabs_lp = zfun.filt_godin(qabs)
        fnet_lp = zfun.filt_godin(fnet)
        ssh_lp = zfun.filt_godin(ssh)
        pad = 36
    else:
        # nday Hanning window
        nday = 120
        nfilt = nday*24
        tef_q_lp = zfun.filt_hanning_mat(tef_q, n=nfilt)
        tef_qs_lp = zfun.filt_hanning_mat(tef_qs, n=nfilt)
        qnet_lp = zfun.filt_hanning(qnet, n=nfilt)
        qabs_lp = zfun.filt_hanning(qabs, n=nfilt)
        fnet_lp = zfun.filt_hanning(fnet, n=nfilt)
        ssh_lp = zfun.filt_hanning(ssh, n=nfilt)
        pad = int(np.ceil(nfilt/2))
示例#6
0
    # sbins are packed low to high
    # ot is time in seconds from 1/1/1970
    sbins = tef_ex['sbins']
    ot = tef_ex['ot']
    tef_q = tef_ex['tef_q']
    tef_qs = tef_ex['tef_qs']
    qnet = tef_ex['qnet']
    fnet = tef_ex['fnet']
    ssh = tef_ex['ssh']

    # low-pass
    if True:
        # tidal averaging
        tef_q_lp = zfun.filt_godin_mat(tef_q)
        tef_qs_lp = zfun.filt_godin_mat(tef_qs)
        qnet_lp = zfun.filt_godin(qnet)
        fnet_lp = zfun.filt_godin(fnet)
        ssh_lp = zfun.filt_godin(ssh)
        pad = 36
    else:
        # nday Hanning window
        nday = 5
        nfilt = nday*24
        tef_q_lp = zfun.filt_hanning_mat(tef_q, n=nfilt)
        tef_qs_lp = zfun.filt_hanning_mat(tef_qs, n=nfilt)
        qnet_lp = zfun.filt_hanning(qnet, n=nfilt)
        fnet_lp = zfun.filt_hanning(fnet, n=nfilt)
        ssh_lp = zfun.filt_hanning(ssh, n=nfilt)
        pad = int(np.ceil(nfilt/2))

    # subsample and cut off nans
示例#7
0
# get the Campbell River tide extraction
pth = os.path.abspath(Ldir['parent'] + 'ptools/tide_obs_mod/')
if pth not in sys.path:
    sys.path.append(pth)
import obsfun
indir = Ldir['parent'] + 'ptools_output/tide/'
noaa_sn_dict, dfo_sn_dict, sn_dict = obsfun.get_sn_dicts()
# load data
year  = 2017
name = 'Campbell River'
sn = sn_dict[name]
mod_dir = indir + 'mod_data/cas4_v2_lo6biom/'
fn = mod_dir + 'tide_' + str(sn) + '_' + str(year) + '.p'
tide = pd.read_pickle(fn)
eta = np.array(tide['eta'].tolist())
eta_lp = zfun.filt_godin(eta)
tide['eta_lp'] = eta_lp
tlp = tide['eta_lp']
tlpd = tlp.resample('1D').mean()
tlpd = tlpd.tz_localize(None)

# get the hycom field from nsog
indir = Ldir['LOo'] + 'misc/'
fn = indir + 'zeta_df.p'
zdf = pd.read_pickle(fn)

# make a DataFrame that has all fields on the same time axis

df = pd.DataFrame(index=pd.date_range(start='1/1/2017', end='1/1/2018'))
df['ROMS Campbell River LP SSH'] = tlpd
df['HYCOM N SoG SSH'] = zdf['z_sog']
示例#8
0
# get the Campbell River tide extraction
pth = os.path.abspath(Ldir['parent'] + 'ptools/tide_obs_mod/')
if pth not in sys.path:
    sys.path.append(pth)
import obsfun
indir = Ldir['parent'] + 'ptools_output/tide/'
noaa_sn_dict, dfo_sn_dict, sn_dict = obsfun.get_sn_dicts()
# load data
year = 2017
name = 'Campbell River'
sn = sn_dict[name]
mod_dir = indir + 'mod_data/cas4_v2_lo6biom/'
fn = mod_dir + 'tide_' + str(sn) + '_' + str(year) + '.p'
tide = pd.read_pickle(fn)
eta = np.array(tide['eta'].tolist())
eta_lp = zfun.filt_godin(eta)
tide['eta_lp'] = eta_lp
tlp = tide['eta_lp']
tlpd = tlp.resample('1D').mean()
tlpd = tlpd.tz_localize(None)

# get the hycom field from nsog
indir = Ldir['LOo'] + 'misc/'
fn = indir + 'zeta_df.p'
zdf = pd.read_pickle(fn)

# make a DataFrame that has all fields on the same time axis

df = pd.DataFrame(index=pd.date_range(start='1/1/2017', end='1/1/2018'))
df['ROMS Campbell River LP SSH'] = tlpd
df['HYCOM N SoG SSH'] = zdf['z_sog']
示例#9
0
#%% TEF processing
#sum spatially
tef_q_shelfbox = -np.sum(tef_q_plume, axis=2) + np.sum(
    tef_q_shelf, axis=2) + np.sum(tef_q_south, axis=2)
tef_qs_shelfbox = -np.sum(tef_qs_plume, axis=2) + np.sum(
    tef_qs_shelf, axis=2) + np.sum(tef_qs_south, axis=2)
tef_q_mouth = np.sum(tef_q_mouth0, axis=2)
tef_qs_mouth = np.sum(tef_qs_mouth0, axis=2)

# first form tidal averages
tef_q_shelfbox_lp = np.nan * np.ones_like(tef_q_shelfbox)
tef_q_mouth_lp = np.nan * np.ones_like(tef_q_mouth)
tef_qs_shelfbox_lp = np.nan * np.ones_like(tef_qs_shelfbox)
tef_qs_mouth_lp = np.nan * np.ones_like(tef_qs_mouth)
for ii in range(ns):
    tef_q_shelfbox_lp[ii, :] = zfun.filt_godin(tef_q_shelfbox[ii, :])
    tef_q_mouth_lp[ii, :] = zfun.filt_godin(tef_q_mouth[ii, :])
    tef_qs_shelfbox_lp[ii, :] = zfun.filt_godin(tef_qs_shelfbox[ii, :])
    tef_qs_mouth_lp[ii, :] = zfun.filt_godin(tef_qs_mouth[ii, :])

# start by making the low-passed flux arrays sorted
# from high to low salinity
# np.flipud equivalent to m[::-1,:,:], according to documentation
# I prefer that as I know which axis I'm using
rq_shelfbox = np.flipud(tef_q_shelfbox_lp)
rqs_shelfbox = np.flipud(tef_qs_shelfbox_lp)
rq_mouth = np.flipud(tef_q_mouth_lp)
rqs_mouth = np.flipud(tef_qs_mouth_lp)

qcs_mouth = np.cumsum(rq_mouth, axis=0)
qcs_shelfbox = np.cumsum(rq_shelfbox, axis=0)
示例#10
0
# Time filters
# change to hour sampling, filling time gaps
    DFF = DFF.resample('H', how='mean')
    DFF = DFF.reindex(pd.date_range(DFF.index[1], DFF.index[-1], freq='H'))
    day_limit = 2  # fills gaps up to this number of days
    DFF_inter = DFF.interpolate(method='linear', limit=24 * day_limit)

    # create arrays for filtering
    DFF_array = DFF.as_matrix()
    DFF_header = DFF.columns.values

    # godin filter
    filt_array = np.array(DFF_array)
    for j in range(DFF_array.shape[1]):
        filt_array[:, j] = zfun.filt_godin(DFF_array[:, j])

    # hanning filter
    for tf in tf_list:
        if tf == 'm':
            filt_m = np.array(DFF_array)
            for j in range(filt_array.shape[1]):
                filt_m[:, j] = zfun.filt_hanning(filt_array[:, j], n=720)
        elif tf == 'w':
            filt_w = np.array(DFF_array)
            for j in range(filt_array.shape[1]):
                filt_w[:, j] = zfun.filt_hanning(filt_array[:, j], n=168)
        elif tf == 'd':
            pass

    # reform dataframes
示例#11
0
riv_df = riv_df0.loc[:, ['columbia', 'fraser', 'skagit']]

# Tide
pth = os.path.abspath(Ldir['parent'] + 'ptools/tide_obs_mod/')
if pth not in sys.path:
    sys.path.append(pth)
import obsfun
noaa_sn_dict, dfo_sn_dict, sn_dict = obsfun.get_sn_dicts()
t_indir = Ldir['parent'] + 'ptools_output/tide/mod_data/' + gtagex + '/'
t_fn = t_indir + 'tide_' + str(sn_dict['Seattle']) + '_' + year + '.p'
tide_df = pickle.load(open(t_fn, 'rb'))
# remove the timezone
tide_df = tide_df.tz_localize(None)
# make a dataframe of spring-neap conditions
eta = tide_df['eta'].values
eta_rms = np.sqrt(zfun.filt_godin(eta**2))
tide_df['eta_rms'] = eta_rms
# subsample to daily
tide_daily_df = tide_df.loc[::24, 'eta_rms']

# Wind
fnw = Ldir[
    'LOo'] + 'moor/' + gtagex + '_2017.01.01_2018.11.29/NANOOS_ChaBa_Buoy_hourly.nc'
moor_ds = nc.Dataset(fnw)
ot = moor_ds['ocean_time'][:]
svstr = moor_ds['svstr'][:]
svstr_lp = zfun.filt_AB8d(svstr)
wind_time = []
for tt in ot:
    wind_time.append(Lfun.modtime_to_datetime(tt))
wind_df = pd.DataFrame(index=wind_time, columns=['svstr', 'svstr_lp'])
示例#12
0
cc = 0  # a counter
for vn in list_to_plot:

    ir, ic = zfun.get_irc(cc, NC)
    ax = axes[ir, ic]
    if low_pass == False:  # raw
        if V[vn].ndim == 2:
            for n in nlist:
                ax.plot(days, V[vn][:, n], linestyle='-', color=cdict[n])
        elif V[vn].ndim == 1:
            ax.plot(days, V[vn])
    elif low_pass == True:  # filtered (e.g. tidally_averaged)
        if V[vn].ndim == 2:
            for n in nlist:
                ax.plot(days,
                        zfun.filt_godin(V[vn][:, n]),
                        linestyle='-',
                        color=cdict[n])
        elif V[vn].ndim == 1:
            ax.plot(days, zfun.filt_godin(V[vn]))

    try:
        if not auto_lims:
            ax.set_ylim(lim_dict[vn][0], lim_dict[vn][1])
    except KeyError:
        pass

    ax.xaxis.set_tick_params(labelrotation=45)

    ax.grid(True)
    ax.set_xlim(days[0], days[-1])
示例#13
0
riv_df = riv_df0.loc[:, ['columbia', 'fraser', 'skagit']]

# Tide
pth = os.path.abspath(Ldir['parent'] + 'ptools/tide_obs_mod/')
if pth not in sys.path:
    sys.path.append(pth)
import obsfun
noaa_sn_dict, dfo_sn_dict, sn_dict = obsfun.get_sn_dicts()
t_indir = Ldir['parent'] + 'ptools_output/tide/mod_data/' + gtagex + '/'
t_fn = t_indir + 'tide_' + str(sn_dict['Seattle']) + '_' + year + '.p'
tide_df = pickle.load(open(t_fn, 'rb'))
# remove the timezone
tide_df = tide_df.tz_localize(None)
# make a dataframe of spring-neap conditions
eta = tide_df['eta'].values
eta_rms = np.sqrt(zfun.filt_godin(eta**2))
tide_df['eta_rms'] = eta_rms
# subsample to daily
tide_daily_df = tide_df.loc[::24, 'eta_rms']

# Wind
fnw = Ldir['LOo'] + 'moor/' + gtagex + '_2017.01.01_2018.11.29/NANOOS_ChaBa_Buoy_hourly.nc'
moor_ds = nc.Dataset(fnw)
ot = moor_ds['ocean_time'][:]
svstr = moor_ds['svstr'][:]
svstr_lp = zfun.filt_AB8d(svstr)
wind_time = []
for tt in ot:
    wind_time.append(Lfun.modtime_to_datetime(tt))
wind_df = pd.DataFrame(index=wind_time, columns=['svstr', 'svstr_lp'])
wind_df['svstr'] = svstr
示例#14
0
def tef_details(fn):
    # this is much the same as tef_integrals() but it returns the raw fields
    # which I plan to use for making a TEF tutorial
    
    # choices
    tidal_average = False # which kind of time filtering
    nlay_max = 2 # maximum allowable number of layers to process
    
    # load results
    tef_dict = pickle.load(open(fn, 'rb'))
    tef_q = tef_dict['tef_q']
    tef_qs = tef_dict['tef_qs']
    sbins = tef_dict['sbins']
    smax = sbins.max()
    qnet = tef_dict['qnet']
    fnet = tef_dict['fnet']
    ot = tef_dict['ot']
    td = (ot - ot[0])/86400
    NS = len(sbins)

    # low-pass
    if tidal_average:
        # tidal averaging
        tef_q_lp = zfun.filt_godin_mat(tef_q)
        tef_qs_lp = zfun.filt_godin_mat(tef_qs)
        qnet_lp = zfun.filt_godin(qnet)
        fnet_lp = zfun.filt_godin(fnet)
        pad = 36
    else:
        # nday Hanning window
        nday = 5
        nfilt = nday*24
        tef_q_lp = zfun.filt_hanning_mat(tef_q, n=nfilt)
        tef_qs_lp = zfun.filt_hanning_mat(tef_qs, n=nfilt)
        qnet_lp = zfun.filt_hanning(qnet, n=nfilt)
        fnet_lp = zfun.filt_hanning(fnet, n=nfilt)
        pad = int(np.ceil(nfilt/2))

    # subsample
    tef_q_lp = tef_q_lp[pad:-(pad+1):24, :]
    tef_qs_lp = tef_qs_lp[pad:-(pad+1):24, :]
    td = td[pad:-(pad+1):24]
    qnet_lp = qnet_lp[pad:-(pad+1):24]
    fnet_lp = fnet_lp[pad:-(pad+1):24]

    #find integrated TEF quantities
    
    # start by making the low-passed flux arrays sorted
    # from high to low salinity
    rq = np.fliplr(tef_q_lp)
    rqs = np.fliplr(tef_qs_lp)
    sbinsr = sbins[::-1]
    # then form the cumulative sum (the function Q(s))
    Q = np.cumsum(rq, axis=1)
    nt = len(td)

    Qi = np.nan * np.zeros((nt, nlay_max))
    Fi = np.nan * np.zeros((nt, nlay_max))
    Qi_abs = np.nan * np.zeros((nt, nlay_max))
    Fi_abs = np.nan * np.zeros((nt, nlay_max))

    Sdiv = np.nan * np.zeros(nt)
    
    for tt in range(nt):
        
        imax = np.argmax(Q[tt,:])
        imin = np.argmin(Q[tt,:])
                
        # set the dividing salinity by the size of the transport
        Qin = rq[tt, 0:imax].sum()
        Qout = rq[tt, 0:imin].sum()
        if np.abs(Qin) > np.abs(Qout):
            idiv = imax
        else:
            idiv = imin
            
        # get the dividing salinity
        Sdiv[tt] = sbinsr[idiv]
                
        ivec = np.unique(np.array([0, idiv, NS+1]))
        nlay = len(ivec)-1

        for ii in range(nlay):
            Qi[tt,ii] = rq[tt, ivec[ii]:ivec[ii+1]].sum()
            Qi_abs[tt,ii] = np.abs(rq[tt, ivec[ii]:ivec[ii+1]]).sum()
            Fi[tt,ii] = rqs[tt, ivec[ii]:ivec[ii+1]].sum()
            Fi_abs[tt,ii] = np.abs(rqs[tt, ivec[ii]:ivec[ii+1]]).sum()
        
    # form derived quantities
    Qcrit = np.abs(Qi[:,0]).mean()/5
    Qi[np.abs(Qi)==0] = np.nan
    Si = Fi_abs/Qi_abs
    
    return Qi, Si, Fi, qnet_lp, fnet_lp, td, sbinsr, Q, rq, Sdiv, tef_q
示例#15
0
ntop = N-1

for vn in list_to_plot:
    
    ir, ic = zfun.get_irc(cc, NC)
    ax = axes[ir, ic]
    if low_pass == False: # raw
        if V[vn].ndim == 2:
            ax.plot(days, V[vn][:, ntop], '-r')
            ax.plot(days, V[vn][:, nmid],'-g')
            ax.plot(days, V[vn][:, nbot], '-b')
        elif V[vn].ndim == 1:
            ax.plot(days, V[vn])
    elif low_pass == True: # filtered (e.g. tidally_averaged)
        if V[vn].ndim == 2:
            ax.plot(days, zfun.filt_godin(V[vn][:, ntop]), '-r')
            ax.plot(days, zfun.filt_godin(V[vn][:, nmid]),'-g')
            ax.plot(days, zfun.filt_godin(V[vn][:, nbot]), '-b')
        elif V[vn].ndim == 1:
            ax.plot(days, zfun.filt_godin(V[vn]))
    
    try:
        if not auto_lims:
            ax.set_ylim(lim_dict[vn][0], lim_dict[vn][1])
    except KeyError:
        pass
        
    ax.grid(True)
    ax.set_xlim(days[0], days[-1])

    if ir == NR-1:
示例#16
0
A[:,0,1] = a3
A[:,1,1] = a4

to_test = 'godin'

if to_test == 'hanning':
    #  filter each one individually
    aa1 = zfun.filt_hanning(a1)
    aa2 = zfun.filt_hanning(a2)
    aa3 = zfun.filt_hanning(a3)
    aa4 = zfun.filt_hanning(a4)
    # and filter this using the function we are testing
    AA = zfun.filt_hanning_mat(A)
elif to_test == 'godin':
    #  filter each one individually
    aa1 = zfun.filt_godin(a1)
    aa2 = zfun.filt_godin(a2)
    aa3 = zfun.filt_godin(a3)
    aa4 = zfun.filt_godin(a4)
    # and filter this using the function we are testing
    AA = zfun.filt_godin_mat(A)

# PLOTTING
plt.close('all')
fig = plt.figure(figsize=(12,8))

ax = fig.add_subplot(111)
ax.plot(t,aa1,'-r',t,aa2, '-b',t,aa3, '-g',t,aa4, '-m', linewidth=10, alpha=.2)
ax.plot(t,AA[:,0,0],'-r',t,AA[:,1,0],'-b',t,AA[:,0,1],'-g',t,AA[:,1,1],'-m')
ax.set_title(to_test.title())
plt.show()
示例#17
0
    s_df = pd.read_pickle(outdir + 'hourly_segment_salinity.p')
    seg_list = list(v_df.columns)

    # Form tidally averaged time series of net salt in segments.  We do this exactly the same as
    # it was done in bulk_calc.py so the resulting time indices are identical.
    pad = 36
    dt_list = list(v_df.index)
    dt_list = dt_list[pad:-(pad + 1):24]
    s_lp_df = pd.DataFrame(index=dt_list, columns=seg_list)
    v_lp_df = pd.DataFrame(index=dt_list, columns=seg_list)
    sv_lp_df = pd.DataFrame(index=dt_list, columns=seg_list)
    for seg_name in seg_list:
        v = v_df.loc[:, seg_name].values
        s = s_df.loc[:, seg_name].values
        sv = s * v
        v_lp = zfun.filt_godin(v)
        s_lp = zfun.filt_godin(s)
        sv_lp = zfun.filt_godin(sv)
        # subsample and cut off nans
        v_lp = v_lp[pad:-(pad + 1):24]
        s_lp = s_lp[pad:-(pad + 1):24]
        sv_lp = sv_lp[pad:-(pad + 1):24]
        # save to DataFrames
        s_lp_df.loc[:, seg_name] = s_lp
        v_lp_df.loc[:, seg_name] = v_lp
        sv_lp_df.loc[:, seg_name] = sv_lp

    # save results to disk.
    s_lp_df.to_pickle(outdir + 'daily_segment_salinity.p')
    v_lp_df.to_pickle(outdir + 'daily_segment_volume.p')
    sv_lp_df.to_pickle(outdir + 'daily_segment_net_salt.p')
示例#18
0
def OBSOLETE_tef_details(fn):
    # this is much the same as tef_integrals() but it returns the raw fields
    # which I plan to use for making a TEF tutorial
    
    # choices
    tidal_average = False # which kind of time filtering
    nlay_max = 2 # maximum allowable number of layers to process
    
    # load results
    tef_dict = pickle.load(open(fn, 'rb'))
    tef_q = tef_dict['tef_q']
    tef_qs = tef_dict['tef_qs']
    sbins = tef_dict['sbins']
    smax = sbins.max()
    qnet = tef_dict['qnet']
    fnet = tef_dict['fnet']
    ot = tef_dict['ot']
    td = (ot - ot[0])/86400
    NS = len(sbins)

    # low-pass
    if tidal_average:
        # tidal averaging
        tef_q_lp = zfun.filt_godin_mat(tef_q)
        tef_qs_lp = zfun.filt_godin_mat(tef_qs)
        qnet_lp = zfun.filt_godin(qnet)
        fnet_lp = zfun.filt_godin(fnet)
        pad = 36
    else:
        # nday Hanning window
        nday = 5
        nfilt = nday*24
        tef_q_lp = zfun.filt_hanning_mat(tef_q, n=nfilt)
        tef_qs_lp = zfun.filt_hanning_mat(tef_qs, n=nfilt)
        qnet_lp = zfun.filt_hanning(qnet, n=nfilt)
        fnet_lp = zfun.filt_hanning(fnet, n=nfilt)
        pad = int(np.ceil(nfilt/2))

    # subsample
    tef_q_lp = tef_q_lp[pad:-(pad+1):24, :]
    tef_qs_lp = tef_qs_lp[pad:-(pad+1):24, :]
    td = td[pad:-(pad+1):24]
    qnet_lp = qnet_lp[pad:-(pad+1):24]
    fnet_lp = fnet_lp[pad:-(pad+1):24]

    #find integrated TEF quantities
    
    # start by making the low-passed flux arrays sorted
    # from high to low salinity
    rq = np.fliplr(tef_q_lp)
    rqs = np.fliplr(tef_qs_lp)
    sbinsr = sbins[::-1]
    # then form the cumulative sum (the function Q(s))
    Q = np.cumsum(rq, axis=1)
    nt = len(td)

    Qi = np.nan * np.zeros((nt, nlay_max))
    Fi = np.nan * np.zeros((nt, nlay_max))
    Qi_abs = np.nan * np.zeros((nt, nlay_max))
    Fi_abs = np.nan * np.zeros((nt, nlay_max))

    Sdiv = np.nan * np.zeros(nt)
    
    for tt in range(nt):
        
        imax = np.argmax(Q[tt,:])
        imin = np.argmin(Q[tt,:])
                
        # set the dividing salinity by the size of the transport
        Qin = rq[tt, 0:imax].sum()
        Qout = rq[tt, 0:imin].sum()
        if np.abs(Qin) > np.abs(Qout):
            idiv = imax
        else:
            idiv = imin
            
        # get the dividing salinity
        Sdiv[tt] = sbinsr[idiv]
                
        ivec = np.unique(np.array([0, idiv, NS+1]))
        nlay = len(ivec)-1

        for ii in range(nlay):
            Qi[tt,ii] = rq[tt, ivec[ii]:ivec[ii+1]].sum()
            Qi_abs[tt,ii] = np.abs(rq[tt, ivec[ii]:ivec[ii+1]]).sum()
            Fi[tt,ii] = rqs[tt, ivec[ii]:ivec[ii+1]].sum()
            Fi_abs[tt,ii] = np.abs(rqs[tt, ivec[ii]:ivec[ii+1]]).sum()
        
    # form derived quantities
    Qcrit = np.abs(Qi[:,0]).mean()/5
    Qi[np.abs(Qi)==0] = np.nan
    Si = Fi_abs/Qi_abs
    
    return Qi, Si, Fi, qnet_lp, fnet_lp, td, sbinsr, Q, rq, Sdiv, tef_q