def test_normalizations_randomized(self, seed_value, normalizer_name_and_func, add_nulls_to_factor): name, kwargs, func = normalizer_name_and_func shape = (20, 20) # All Trues. nomask = self.ones_mask(shape=shape) # Falses on main diagonal. eyemask = self.eye_mask(shape=shape) # Falses on other diagonal. eyemask90 = rot90(eyemask) # Falses on both diagonals. xmask = eyemask & eyemask90 # Block of random data. factor_data = self.randn_data(seed=seed_value, shape=shape) if add_nulls_to_factor: factor_data = where(eyemask, factor_data, nan) # Cycles of 0, 1, 2, 0, 1, 2, ... classifier_data = ( (self.arange_data(shape=shape, dtype=int64_dtype) + seed_value) % 3 ) # With -1s on main diagonal. classifier_data_eyenulls = where(eyemask, classifier_data, -1) # With -1s on opposite diagonal. classifier_data_eyenulls90 = where(eyemask90, classifier_data, -1) # With -1s on both diagonals. classifier_data_xnulls = where(xmask, classifier_data, -1) f = self.f c = C() c_with_nulls = OtherC() m = Mask() method = partial(getattr(f, name), **kwargs) terms = { 'vanilla': method(), 'masked': method(mask=m), 'grouped': method(groupby=c), 'grouped_with_nulls': method(groupby=c_with_nulls), 'both': method(mask=m, groupby=c), 'both_with_nulls': method(mask=m, groupby=c_with_nulls), } expected = { 'vanilla': apply_along_axis(func, 1, factor_data,), 'masked': where( eyemask, grouped_apply(factor_data, eyemask, func), nan, ), 'grouped': grouped_apply( factor_data, classifier_data, func, ), # If the classifier has nulls, we should get NaNs in the # corresponding locations in the output. 'grouped_with_nulls': where( eyemask90, grouped_apply(factor_data, classifier_data_eyenulls90, func), nan, ), # Passing a mask with a classifier should behave as though the # classifier had nulls where the mask was False. 'both': where( eyemask, grouped_apply( factor_data, classifier_data_eyenulls, func, ), nan, ), 'both_with_nulls': where( xmask, grouped_apply( factor_data, classifier_data_xnulls, func, ), nan, ) } self.check_terms( terms=terms, expected=expected, initial_workspace={ f: factor_data, c: classifier_data, c_with_nulls: classifier_data_eyenulls90, Mask(): eyemask, }, mask=self.build_mask(nomask), )
def test_normalizations_randomized(self, seed_value, normalizer_name_and_func, add_nulls_to_factor): name, func = normalizer_name_and_func shape = (7, 7) # All Trues. nomask = self.ones_mask(shape=shape) # Falses on main diagonal. eyemask = self.eye_mask(shape=shape) # Falses on other diagonal. eyemask90 = rot90(eyemask) # Falses on both diagonals. xmask = eyemask & eyemask90 # Block of random data. factor_data = self.randn_data(seed=seed_value, shape=shape) if add_nulls_to_factor: factor_data = where(eyemask, factor_data, nan) # Cycles of 0, 1, 2, 0, 1, 2, ... classifier_data = ( (self.arange_data(shape=shape, dtype=int64_dtype) + seed_value) % 3) # With -1s on main diagonal. classifier_data_eyenulls = where(eyemask, classifier_data, -1) # With -1s on opposite diagonal. classifier_data_eyenulls90 = where(eyemask90, classifier_data, -1) # With -1s on both diagonals. classifier_data_xnulls = where(xmask, classifier_data, -1) f = self.f c = C() c_with_nulls = OtherC() m = Mask() method = getattr(f, name) terms = { 'vanilla': method(), 'masked': method(mask=m), 'grouped': method(groupby=c), 'grouped_with_nulls': method(groupby=c_with_nulls), 'both': method(mask=m, groupby=c), 'both_with_nulls': method(mask=m, groupby=c_with_nulls), } expected = { 'vanilla': apply_along_axis( func, 1, factor_data, ), 'masked': where( eyemask, grouped_apply(factor_data, eyemask, func), nan, ), 'grouped': grouped_apply( factor_data, classifier_data, func, ), # If the classifier has nulls, we should get NaNs in the # corresponding locations in the output. 'grouped_with_nulls': where( eyemask90, grouped_apply(factor_data, classifier_data_eyenulls90, func), nan, ), # Passing a mask with a classifier should behave as though the # classifier had nulls where the mask was False. 'both': where( eyemask, grouped_apply( factor_data, classifier_data_eyenulls, func, ), nan, ), 'both_with_nulls': where( xmask, grouped_apply( factor_data, classifier_data_xnulls, func, ), nan, ) } self.check_terms( terms=terms, expected=expected, initial_workspace={ f: factor_data, c: classifier_data, c_with_nulls: classifier_data_eyenulls90, Mask(): eyemask, }, mask=self.build_mask(nomask), )