def init_engine(self, loader): """ Construct and save an FFCEngine from loader. If loader is None, constructs a NoOpFFCEngine. """ if loader is not None: self.engine = SimpleFFCEngine( loader, self.trading_environment.trading_days, self.asset_finder, ) else: self.engine = NoOpFFCEngine()
def __init__(self, *args, **kwargs): """Initialize sids and other state variables. :Arguments: :Optional: initialize : function Function that is called with a single argument at the begninning of the simulation. handle_data : function Function that is called with 2 arguments (context and data) on every bar. script : str Algoscript that contains initialize and handle_data function definition. data_frequency : {'daily', 'minute'} The duration of the bars. capital_base : float <default: 1.0e5> How much capital to start with. instant_fill : bool <default: False> Whether to fill orders immediately or on next bar. asset_finder : An AssetFinder object A new AssetFinder object to be used in this TradingEnvironment asset_metadata: can be either: - dict - pandas.DataFrame - object with 'read' property If dict is provided, it must have the following structure: * keys are the identifiers * values are dicts containing the metadata, with the metadata field name as the key If pandas.DataFrame is provided, it must have the following structure: * column names must be the metadata fields * index must be the different asset identifiers * array contents should be the metadata value If an object with a 'read' property is provided, 'read' must return rows containing at least one of 'sid' or 'symbol' along with the other metadata fields. identifiers : List Any asset identifiers that are not provided in the asset_metadata, but will be traded by this TradingAlgorithm """ self.sources = [] # List of trading controls to be used to validate orders. self.trading_controls = [] # List of account controls to be checked on each bar. self.account_controls = [] self._recorded_vars = {} self.namespace = kwargs.get('namespace', {}) self._platform = kwargs.pop('platform', 'zipline') self.logger = None self.benchmark_return_source = None # default components for transact self.slippage = VolumeShareSlippage() self.commission = PerShare() self.instant_fill = kwargs.pop('instant_fill', False) # set the capital base self.capital_base = kwargs.pop('capital_base', DEFAULT_CAPITAL_BASE) self.sim_params = kwargs.pop('sim_params', None) if self.sim_params is None: self.sim_params = create_simulation_parameters( capital_base=self.capital_base, start=kwargs.pop('start', None), end=kwargs.pop('end', None)) self.perf_tracker = PerformanceTracker(self.sim_params) # Update the TradingEnvironment with the provided asset metadata self.trading_environment = kwargs.pop('env', TradingEnvironment.instance()) self.trading_environment.update_asset_finder( asset_finder=kwargs.pop('asset_finder', None), asset_metadata=kwargs.pop('asset_metadata', None), identifiers=kwargs.pop('identifiers', None)) # Pull in the environment's new AssetFinder for quick reference self.asset_finder = self.trading_environment.asset_finder ffc_loader = kwargs.get('ffc_loader', None) if ffc_loader is not None: self.engine = SimpleFFCEngine( ffc_loader, self.trading_environment.trading_days, self.asset_finder, ) else: self.engine = NoOpFFCEngine() # Maps from name to Term self._filters = {} self._factors = {} self._classifiers = {} self.blotter = kwargs.pop('blotter', None) if not self.blotter: self.blotter = Blotter() # Set the dt initally to the period start by forcing it to change self.on_dt_changed(self.sim_params.period_start) self.portfolio_needs_update = True self.account_needs_update = True self.performance_needs_update = True self._portfolio = None self._account = None self.history_container_class = kwargs.pop( 'history_container_class', HistoryContainer, ) self.history_container = None self.history_specs = {} # If string is passed in, execute and get reference to # functions. self.algoscript = kwargs.pop('script', None) self._initialize = None self._before_trading_start = None self._analyze = None self.event_manager = EventManager() if self.algoscript is not None: filename = kwargs.pop('algo_filename', None) if filename is None: filename = '<string>' code = compile(self.algoscript, filename, 'exec') exec_(code, self.namespace) self._initialize = self.namespace.get('initialize') if 'handle_data' not in self.namespace: raise ValueError('You must define a handle_data function.') else: self._handle_data = self.namespace['handle_data'] self._before_trading_start = \ self.namespace.get('before_trading_start') # Optional analyze function, gets called after run self._analyze = self.namespace.get('analyze') elif kwargs.get('initialize') and kwargs.get('handle_data'): if self.algoscript is not None: raise ValueError('You can not set script and \ initialize/handle_data.') self._initialize = kwargs.pop('initialize') self._handle_data = kwargs.pop('handle_data') self._before_trading_start = kwargs.pop('before_trading_start', None) self.event_manager.add_event( zipline.utils.events.Event( zipline.utils.events.Always(), # We pass handle_data.__func__ to get the unbound method. # We will explicitly pass the algorithm to bind it again. self.handle_data.__func__, ), prepend=True, ) # If method not defined, NOOP if self._initialize is None: self._initialize = lambda x: None # Alternative way of setting data_frequency for backwards # compatibility. if 'data_frequency' in kwargs: self.data_frequency = kwargs.pop('data_frequency') self._most_recent_data = None # Prepare the algo for initialization self.initialized = False self.initialize_args = args self.initialize_kwargs = kwargs