def get_jsnark_circuit_class_str(circuit: CircuitHelper, crypto_init_stmts: List[str], fdefs: List[str], circuit_statements: List[str]) -> str: """ Inject circuit and input code into jsnark-wrapper skeleton. :param circuit: the abstract circuit to which this java code corresponds :param fdefs: java code that calls addCryptoBackend for each used crypto backend :param fdefs: java function definition with circuit code for each transitively called function (public calls in this circuit's function) :param circuit_statements: the java code corresponding to this circuit :return: complete java file as string """ function_definitions = '\n\n'.join(fdefs) if function_definitions: function_definitions = f'\n{function_definitions}\n' return _class_template_str.format( circuit_class_name=cfg.jsnark_circuit_classname, circuit_name=circuit.get_verification_contract_name(), crypto_init_stmts=indent(indent('\n'.join(crypto_init_stmts))), pub_in_size=circuit.in_size_trans, pub_out_size=circuit.out_size_trans, priv_in_size=circuit.priv_in_size_trans, use_input_hashing=str(cfg.should_use_hash(circuit)).lower(), fdefs=indent(function_definitions), circuit_statements=indent(indent('\n'.join(circuit_statements))))
def create_circuit_helper(fct: ConstructorOrFunctionDefinition, global_owners: List[PrivacyLabelExpr], internal_circ: Optional[CircuitHelper] = None): """ Create circuit helper for the given function. :param fct: function for which to create a circuit :param global_owners: list of all statically known privacy labels (me + final address state variables) :param internal_circ: the circuit of the internal function on which to base this circuit (only used when creating the circuit of the external wrapper function) :return: new circuit helper """ return CircuitHelper(fct, global_owners, ZkayExpressionTransformer, ZkayCircuitTransformer, internal_circ)
def add_function_circuit_arguments(circuit: CircuitHelper): """Generate java code which adds circuit IO as described by circuit""" input_init_stmts = [] for sec_input in circuit.sec_idfs: input_init_stmts.append( f'addS("{sec_input.name}", {sec_input.t.size_in_uints}, {_get_t(sec_input.t)});' ) for pub_input in circuit.input_idfs: if pub_input.t.is_key(): backend = pub_input.t.crypto_params.crypto_name input_init_stmts.append( f'addK("{backend}", "{pub_input.name}", {pub_input.t.size_in_uints});' ) else: input_init_stmts.append( f'addIn("{pub_input.name}", {pub_input.t.size_in_uints}, {_get_t(pub_input.t)});' ) for pub_output in circuit.output_idfs: input_init_stmts.append( f'addOut("{pub_output.name}", {pub_output.t.size_in_uints}, {_get_t(pub_output.t)});' ) sec_input_names = [sec_input.name for sec_input in circuit.sec_idfs] for crypto_params in cfg.all_crypto_params(): pk_name = circuit.get_glob_key_name(MeExpr(), crypto_params) sk_name = circuit.get_own_secret_key_name(crypto_params) if crypto_params.is_symmetric_cipher() and sk_name in sec_input_names: assert pk_name in [ pub_input.name for pub_input in circuit.input_idfs ] input_init_stmts.append( f'setKeyPair("{crypto_params.crypto_name}", "{pk_name}", "{sk_name}");' ) return input_init_stmts
def _get_circuit_output_dir(self, circuit: CircuitHelper): """Return the output directory for an individual circuit""" return os.path.join(self.output_dir, cfg.get_circuit_output_dir_name(circuit.get_verification_contract_name()))
def create_external_wrapper_body(int_fct: ConstructorOrFunctionDefinition, ext_circuit: CircuitHelper, original_params: List[Parameter], requires_proof: bool) -> Block: """ Return Block with external wrapper function body. :param int_fct: corresponding internal function :param ext_circuit: [SIDE EFFECT] circuit helper of the external wrapper function :param original_params: list of transformed function parameters without additional parameters added due to transformation :return: body with wrapper code """ priv_args = [p for p in original_params if p.annotated_type.is_cipher()] args_backends = OrderedDict.fromkeys([p.annotated_type.type_name.crypto_params for p in priv_args]) stmts = [] for crypto_params in args_backends: assert crypto_params in int_fct.used_crypto_backends # If there are any private arguments with homomorphism 'hom', we need the public key for that crypto backend ext_circuit._require_public_key_for_label_at(None, Expression.me_expr(), crypto_params) for crypto_params in cfg.all_crypto_params(): if crypto_params.is_symmetric_cipher(): if (MeExpr(), crypto_params) in ext_circuit.requested_global_keys or crypto_params in args_backends: # Make sure msg.sender's key pair is available in the circuit stmts += ext_circuit.request_private_key(crypto_params) # Verify that out parameter has correct size stmts += [RequireStatement(IdentifierExpr(cfg.zk_out_name).dot('length').binop('==', NumberLiteralExpr(ext_circuit.out_size_trans)))] # IdentifierExpr for array var holding serialized public circuit inputs in_arr_var = IdentifierExpr(cfg.zk_in_name).as_type(Array(AnnotatedTypeName.uint_all())) # Request static public keys offset = 0 key_req_stmts = [] me_key_idx: Dict[CryptoParams, int] = {} if ext_circuit.requested_global_keys: # Ensure that me public key is stored starting at in[0] keys = [key for key in ext_circuit.requested_global_keys] tmp_keys = {} for crypto_params in int_fct.used_crypto_backends: tmp_key_var = Identifier(f'_tmp_key_{crypto_params.identifier_name}') key_req_stmts.append(tmp_key_var.decl_var(AnnotatedTypeName.key_type(crypto_params))) tmp_keys[crypto_params] = tmp_key_var for (key_owner, crypto_params) in keys: tmp_key_var = tmp_keys[crypto_params] idf, assignment = ext_circuit.request_public_key(crypto_params, key_owner, ext_circuit.get_glob_key_name(key_owner, crypto_params)) assignment.lhs = IdentifierExpr(tmp_key_var.clone()) key_req_stmts.append(assignment) # Remember me-keys for later use in symmetrically encrypted keys if key_owner == MeExpr(): assert crypto_params not in me_key_idx me_key_idx[crypto_params] = offset # Manually add to circuit inputs key_len = crypto_params.key_len key_req_stmts.append(in_arr_var.slice(offset, key_len).assign(IdentifierExpr(tmp_key_var.clone()).slice(0, key_len))) offset += key_len assert offset == ext_circuit.in_size # Check encrypted parameters param_stmts = [] for p in original_params: """ * of T_e rule 8 """ if p.annotated_type.is_cipher(): cipher_payload_len = p.annotated_type.type_name.crypto_params.cipher_payload_len assign_stmt = in_arr_var.slice(offset, cipher_payload_len).assign(IdentifierExpr(p.idf.clone()).slice(0, cipher_payload_len)) ext_circuit.ensure_parameter_encryption(assign_stmt, p) # Manually add to circuit inputs param_stmts.append(assign_stmt) offset += cipher_payload_len # Populate sender field of parameters encrypted with a symmetric cipher copy_stmts = [] for p in original_params: if p.annotated_type.is_cipher(): c = p.annotated_type.type_name assert isinstance(c, CipherText) if c.crypto_params.is_symmetric_cipher(): sender_key = in_arr_var.index(me_key_idx[c.crypto_params]) idf = IdentifierExpr(p.idf.clone()).as_type(p.annotated_type.clone()) cipher_payload_len = cfg.get_crypto_params(p.annotated_type.homomorphism).cipher_payload_len lit = ArrayLiteralExpr([idf.clone().index(i) for i in range(cipher_payload_len)] + [sender_key]) copy_stmts.append(VariableDeclarationStatement(VariableDeclaration([], p.annotated_type.clone(), p.idf.clone(), 'memory'), lit)) if copy_stmts: param_stmts += [Comment(), Comment('Copy from calldata to memory and set sender field')] + copy_stmts # Declare in array new_in_array_expr = NewExpr(AnnotatedTypeName(TypeName.dyn_uint_array()), [NumberLiteralExpr(ext_circuit.in_size_trans)]) in_var_decl = in_arr_var.idf.decl_var(TypeName.dyn_uint_array(), new_in_array_expr) stmts.append(in_var_decl) stmts.append(Comment()) stmts += Comment.comment_wrap_block('Request static public keys', key_req_stmts) stmts += Comment.comment_wrap_block('Backup private arguments for verification', param_stmts) # Call internal function args = [IdentifierExpr(param.idf.clone()) for param in original_params] internal_call = FunctionCallExpr(IdentifierExpr(int_fct.idf.clone()).override(target=int_fct), args) internal_call.sec_start_offset = ext_circuit.priv_in_size if int_fct.requires_verification: ext_circuit.call_function(internal_call) args += [in_arr_var.clone(), NumberLiteralExpr(ext_circuit.in_size), IdentifierExpr(cfg.zk_out_name), NumberLiteralExpr(ext_circuit.out_size)] if int_fct.return_parameters: stmts += Comment.comment_list("Declare return variables", [VariableDeclarationStatement(deep_copy(vd)) for vd in int_fct.return_var_decls]) in_call = TupleExpr([IdentifierExpr(vd.idf.clone()) for vd in int_fct.return_var_decls]).assign(internal_call) else: in_call = ExpressionStatement(internal_call) stmts.append(Comment("Call internal function")) stmts.append(in_call) stmts.append(Comment()) # Call verifier if requires_proof and not cfg.disable_verification: verifier = IdentifierExpr(cfg.get_contract_var_name(ext_circuit.verifier_contract_type.code())) verifier_args = [IdentifierExpr(cfg.proof_param_name), IdentifierExpr(cfg.zk_in_name), IdentifierExpr(cfg.zk_out_name)] verify = ExpressionStatement(verifier.call(cfg.verification_function_name, verifier_args)) stmts.append(StatementList([Comment('Verify zk proof of execution'), verify], excluded_from_simulation=True)) # Add return statement at the end if necessary if int_fct.return_parameters: stmts.append(ReturnStatement(TupleExpr([IdentifierExpr(vd.idf.clone()) for vd in int_fct.return_var_decls]))) return Block(stmts)
def create_external_wrapper_body(int_fct: ConstructorOrFunctionDefinition, ext_circuit: CircuitHelper, original_params: List[Parameter], requires_proof: bool) -> Block: """ Return Block with external wrapper function body. :param int_fct: corresponding internal function :param ext_circuit: [SIDE EFFECT] circuit helper of the external wrapper function :param original_params: list of transformed function parameters without additional parameters added due to transformation :return: body with wrapper code """ has_priv_args = any( [p.annotated_type.is_cipher() for p in original_params]) stmts = [] if has_priv_args: ext_circuit._require_public_key_for_label_at( None, Expression.me_expr()) if cfg.is_symmetric_cipher(): # Make sure msg.sender's key pair is available in the circuit assert any(isinstance(k, MeExpr) for k in ext_circuit.requested_global_keys) \ or has_priv_args, "requires verification => both sender keys required" stmts += ext_circuit.request_private_key() # Verify that out parameter has correct size stmts += [ RequireStatement( IdentifierExpr(cfg.zk_out_name).dot('length').binop( '==', NumberLiteralExpr(ext_circuit.out_size_trans))) ] # IdentifierExpr for array var holding serialized public circuit inputs in_arr_var = IdentifierExpr(cfg.zk_in_name).as_type( Array(AnnotatedTypeName.uint_all())) # Find index of me's public key in requested_global_keys glob_me_key_index = -1 for idx, e in enumerate(ext_circuit.requested_global_keys): if isinstance(e, MeExpr): glob_me_key_index = idx break # Request static public keys offset = 0 key_req_stmts = [] if ext_circuit.requested_global_keys: # Ensure that me public key is stored starting at in[0] keys = [key for key in ext_circuit.requested_global_keys] if glob_me_key_index != -1: (keys[0], keys[glob_me_key_index]) = (keys[glob_me_key_index], keys[0]) tmp_key_var = Identifier('_tmp_key') key_req_stmts.append( tmp_key_var.decl_var(AnnotatedTypeName.key_type())) for key_owner in keys: idf, assignment = ext_circuit.request_public_key( key_owner, ext_circuit.get_glob_key_name(key_owner)) assignment.lhs = IdentifierExpr(tmp_key_var.clone()) key_req_stmts.append(assignment) # Manually add to circuit inputs key_req_stmts.append( in_arr_var.slice(offset, cfg.key_len).assign( IdentifierExpr(tmp_key_var.clone()).slice( 0, cfg.key_len))) offset += cfg.key_len assert offset == ext_circuit.in_size # Check encrypted parameters param_stmts = [] for p in original_params: """ * of T_e rule 8 """ if p.annotated_type.is_cipher(): assign_stmt = in_arr_var.slice( offset, cfg.cipher_payload_len).assign( IdentifierExpr(p.idf.clone()).slice( 0, cfg.cipher_payload_len)) ext_circuit.ensure_parameter_encryption(assign_stmt, p) # Manually add to circuit inputs param_stmts.append(assign_stmt) offset += cfg.cipher_payload_len if cfg.is_symmetric_cipher(): # Populate sender field of encrypted parameters copy_stmts = [] for p in original_params: if p.annotated_type.is_cipher(): sender_key = in_arr_var.index(0) idf = IdentifierExpr(p.idf.clone()).as_type( p.annotated_type.clone()) lit = ArrayLiteralExpr([ idf.clone().index(i) for i in range(cfg.cipher_payload_len) ] + [sender_key]) copy_stmts.append( VariableDeclarationStatement( VariableDeclaration([], p.annotated_type.clone(), p.idf.clone(), 'memory'), lit)) if copy_stmts: param_stmts += [ Comment(), Comment( 'Copy from calldata to memory and set sender field') ] + copy_stmts assert glob_me_key_index != -1, "Symmetric cipher but did not request me key" # Declare in array new_in_array_expr = NewExpr( AnnotatedTypeName(TypeName.dyn_uint_array()), [NumberLiteralExpr(ext_circuit.in_size_trans)]) in_var_decl = in_arr_var.idf.decl_var(TypeName.dyn_uint_array(), new_in_array_expr) stmts.append(in_var_decl) stmts.append(Comment()) stmts += Comment.comment_wrap_block('Request static public keys', key_req_stmts) stmts += Comment.comment_wrap_block( 'Backup private arguments for verification', param_stmts) # Call internal function args = [IdentifierExpr(param.idf.clone()) for param in original_params] internal_call = FunctionCallExpr( IdentifierExpr(int_fct.idf.clone()).override(target=int_fct), args) internal_call.sec_start_offset = ext_circuit.priv_in_size if int_fct.requires_verification: ext_circuit.call_function(internal_call) args += [ in_arr_var.clone(), NumberLiteralExpr(ext_circuit.in_size), IdentifierExpr(cfg.zk_out_name), NumberLiteralExpr(ext_circuit.out_size) ] if int_fct.return_parameters: stmts += Comment.comment_list("Declare return variables", [ VariableDeclarationStatement(deep_copy(vd)) for vd in int_fct.return_var_decls ]) in_call = TupleExpr([ IdentifierExpr(vd.idf.clone()) for vd in int_fct.return_var_decls ]).assign(internal_call) else: in_call = ExpressionStatement(internal_call) stmts.append(Comment("Call internal function")) stmts.append(in_call) stmts.append(Comment()) # Call verifier if requires_proof: verifier = IdentifierExpr( cfg.get_contract_var_name( ext_circuit.verifier_contract_type.code())) verifier_args = [ IdentifierExpr(cfg.proof_param_name), IdentifierExpr(cfg.zk_in_name), IdentifierExpr(cfg.zk_out_name) ] verify = ExpressionStatement( verifier.call(cfg.verification_function_name, verifier_args)) stmts.append( StatementList( [Comment('Verify zk proof of execution'), verify], excluded_from_simulation=True)) # Add return statement at the end if necessary if int_fct.return_parameters: stmts.append( ReturnStatement( TupleExpr([ IdentifierExpr(vd.idf.clone()) for vd in int_fct.return_var_decls ]))) return Block(stmts)