示例#1
0
def genHRfacSpatialQt(pindx, nsite, isite, int1e, int2e, qpts, pdic, maxslc=1):
    p, ip = pindx
    iop = 1
    isym = 2
    status = 'L'
    isz = p % 2
    site = mpo_dmrg_opers.genHRfacSpatial(pindx, nsite, isite, int1e, int2e,
                                          qpts, pdic)
    # Site physical indices
    qu, qd = genQphys(isym, isite)
    # Orbital dependent part
    ql1e, qr1e = genElemQnums(p, 2 * isite, iop, status)
    ql2e, qr2e = genElemQnums(p, 2 * isite + 1, iop, status)
    ql1 = ql1e
    qr1 = qr2e
    ql1w, qr1w = genWfacQnums(nsite, 2 * isite, isz, status)
    ql2w, qr2w = genWfacQnums(nsite, 2 * isite + 1, isz, status)
    ql2 = ql1w
    qr2 = qr2w
    ql = [q1 + q2 for q1, q2 in itertools.product(ql1, ql2)]
    qr = [q1 + q2 for q1, q2 in itertools.product(qr1, qr2)]
    # Reduce symmetry: local spin rotation do not change particle number
    if ip is not None:
        ql = qtensor_util.reduceQnumsToN(ql)
        qr = qtensor_util.reduceQnumsToN(qr)
        qu = qtensor_util.reduceQnumsToN(qu)
        qd = qtensor_util.reduceQnumsToN(qd)
    #
    # We sort the internal quantum number first
    #
    nql = len(ql)
    nqr = len(qr)
    idxl = sortQnums(ql)
    idxr = sortQnums(qr)
    ql = numpy.array(ql)[idxl]
    qr = numpy.array(qr)[idxr]
    site = site[numpy.ix_(idxl, idxr)].copy()
    # Slice operators if necessary
    qts = qtensor.Qt(2)
    qts.maxslc[0] = min(maxslc, nql)
    qts.maxslc[1] = min(maxslc, nqr)
    qts.genDic()
    for islc in range(qts.maxslc[0]):
        slc0 = parallel_util.partitionSites(nql, qts.maxslc[0], islc)
        for jslc in range(qts.maxslc[1]):
            slc1 = parallel_util.partitionSites(nqr, qts.maxslc[1], jslc)
            ijdx = qts.ravel([islc, jslc])
            qts.dic[ijdx] = qtensor.qtensor([False, True, False, True])
            # Note that the qsyms for the last two dimensions are not collected
            qts.dic[ijdx].fromDenseTensor(site[numpy.ix_(slc0, slc1)],
                                          [ql[slc0], qr[slc1], qu, qd],
                                          ifcollect=[1, 1, 0, 0])
            qts.size[ijdx] = qts.dic[ijdx].size_allowed
    return qts
示例#2
0
def testHRfacSpatial():
    #
    # Savings are slightly reduced due to the nonzero terms
    # that mix blocks with different Sz values. [2 times]
    #
    #   	   [ 1   0   0   0 ]
    #   R(a) = [ 0   c  -s   0 ]
    #   	   [ 0  -s   c   0 ]
    #  	   [ 0   0   0   1 ]
    #
    # p,isz,isite= 9 1 39
    # hop= (162, 1, 4, 4)
    # site0.shape= (162, 1, 4, 4)  sum= 19.4722422084
    # Basic information:
    #  rank = 4  shape= [162   1   4   4]  nsyms= [4 1 3 3]
    #  nblks_allowed = 8  nblks = 36
    #  size_allowed  = 572  size = 2592  savings= 0.220679012346
    # site1a.shape= (162, 1, 4, 4)  sum= 19.4722422084
    # isz,isite,diffa= 1 39 0.0
    #
    numpy.random.seed(10)
    nsite = 10
    nbas = nsite * 2
    hmo = numpy.random.uniform(-1, 1, (nbas, nbas))
    hmo[::2, 1::2] = hmo[1::2, ::2] = 0.
    # [ij|kl]
    eri = numpy.random.uniform(-1, 1, (nbas, nbas, nbas, nbas))
    eri[::2, 1::2] = eri[1::2, ::2] = eri[:, :, ::2,
                                          1::2] = eri[:, :, 1::2, ::2] = 0.
    # The spin symmetry is essential.
    #   <ij|kl>=[ik|jl]
    eri = eri.transpose(0, 2, 1, 3)
    # Antisymmetry is not since only r<s is taken.
    #   # Antisymmetrize V[pqrs]=-1/2*<pq||rs>
    #   eri = -0.5*(eri-eri.transpose(0,1,3,2))
    ta = 0.
    tb = 0.
    for p in range(nbas):
        isz = p % 2
        for isite in range(nsite):
            print '\np,isz,isite=', p, isz, isite
            t0 = time.time()
            pindx = (p, 0)
            qpts = numpy.array([0.3])
            site0 = mpo_dmrg_opers.genHRfacSpatial(pindx, nbas, isite, hmo,
                                                   eri, qpts)
            t1 = time.time()
            print 'hop=', site0.shape
            print 'site0.shape=', site0.shape, ' sum=', numpy.sum(site0)
            # Wsite
            pdic = None  #fake
            qt12a = genHRfacSpatialQt(pindx, nbas, isite, hmo, eri, pdic, qpts)
            qt12a.prt()
            site1a = qt12a.toDenseTensor()
            t2 = time.time()
            print 'site1a.shape=', site1a.shape, ' sum=', numpy.sum(site1a)
            assert site0.shape == site1a.shape
            diffa = numpy.linalg.norm(site0 - site1a)
            print 'isz,isite,diffa=', isz, isite, diffa
            ta += t1 - t0
            tb += t2 - t1
        print
        print 'ta =', ta
        print 'tb =', tb
        qt12a.prt()
        print 'qsyms=', qt12a.qsyms
        print 'nsyms=', qt12a.nsyms
        print 'idlst=', qt12a.idlst
        print 'vals =', qt12a.value
    return 0
示例#3
0
def test_HRfac():
    # LOAD MPS
    fname = './mps.h5'
    mps, qnum = mps_io.loadMPS(fname)
    lmps = [mps, qnum]
    bdim = [len(x) for x in qnum]
    print(' bdim = ', bdim)
    nsite = len(mps)
    qphys = mpo_dmrg_qphys.initSpatialOrb(nsite, 2)
    ta = 0.
    tb = 0.
    nbas = 2 * nsite
    # random
    hmo = numpy.random.uniform(-1, 1, (nbas, nbas))
    hmo[::2, 1::2] = hmo[1::2, ::2] = 0.
    # [ij|kl]
    eri = numpy.random.uniform(-1, 1, (nbas, nbas, nbas, nbas))
    eri[::2, 1::2] = eri[1::2, ::2] = eri[:, :, ::2,
                                          1::2] = eri[:, :, 1::2, ::2] = 0.
    # The spin symmetry is essential.
    #   <ij|kl>=[ik|jl]
    eri = eri.transpose(0, 2, 1, 3)
    maxn = 3
    for p in [6, 5]:
        isz = p % 2
        for isite in range(min(nsite, 5)):
            ql = qnum[isite]
            qn = qphys[isite]
            qr = qnum[isite + 1]
            cl = qtensor_util.classification(ql)
            cn = qtensor_util.classification(qn)
            cr = qtensor_util.classification(qr)
            print()
            print('isite/nsite=', isite, nsite)
            site = mps[isite]
            tmps = qtensor.qtensor([False, False, True])
            tmps.fromDenseTensor(site, [ql, qn, qr])
            print('mps site info:')
            tmps.prt()

            if isite < maxn:
                # Reference value:
                t0 = time.time()
                pindx = (p, 0)
                qpts = numpy.array([0.3])
                op = mpo_dmrg_opers.genHRfacSpatial(pindx, nbas, isite, hmo,
                                                    eri, qpts)
                print(' wop=', op.shape)
                #csite = numpy.einsum('lrij,ajb->lairb',op,site)
                csite = numpy.tensordot(op, site, axes=([3], [1]))  # lriab
                csite = csite.transpose(0, 3, 2, 1, 4)  # lriab->lairb
                s = csite.shape
                csite = csite.reshape((s[0] * s[1], s[2], s[3] * s[4]))
                t1 = time.time()
                print(' t1=', t1 - t0)

                # Lowering the symmetry of MPS?
                qop = qtensor_opers.genHRfacSpatialQt(pindx, nbas, isite, hmo,
                                                      eri, qpts)
                # We need to change qop construction allowing given qsyms !
                tmps2 = tmps.reduceQsymsToN()
                #tmps2 = tmps2.projectionNMs(tmps.qsyms)
                #diff = numpy.linalg.norm(tmps2.value-tmps.value)
                #print ' diff=',diff
                tmps2 = qtensor.tensordot(qop, tmps2, axes=([3], [1]))
                tmps2 = tmps2.transpose(0, 3, 2, 1, 4)
                tmps2 = tmps2.merge([[0, 1], [2], [3, 4]])
                tsite = tmps2.toDenseTensor()

                t2 = time.time()
                print(' t2=', t2 - t1)
                assert csite.shape == tsite.shape
                diff = numpy.linalg.norm(tsite - csite)
                print('isite,diff=', isite, csite.shape, diff, ' t0=', t1 - t0,
                      ' t1=', t2 - t1)
                assert diff < 1.e-10
                ta += t1 - t0
                tb += t2 - t1

            else:

                # Reference value:
                t0 = time.time()
                pindx = (p, 0)
                qpts = numpy.array([0.3])
                t1 = time.time()
                qop = qtensor_opers.genHRfacSpatialQt(pindx, nbas, isite, hmo,
                                                      eri, qpts)
                tmps2 = tmps.reduceQsymsToN()
                tmps2 = qtensor.tensordot(qop, tmps2, axes=([3], [1]))
                print('before transposing:')
                tmps2.prt()
                tmps2 = tmps2.transpose(0, 3, 2, 1, 4)
                print('after transposing:')
                tmps2.prt()
                tmps2 = tmps2.merge([[0, 1], [2], [3, 4]])
                print('after merging:')
                tmps2.prt()
                t2 = time.time()
                print('isite=', isite, ' t2=', t2 - t1)

    print()
    print('ta=', ta)
    print('tb=', tb)
    print()
    return 0