def test_predict_with_uncertainty(self, ): self.model.fit_eval(self.x_train, self.y_train, mc=True, **self.config) prediction, uncertainty = self.model.predict_with_uncertainty( self.x_test, n_iter=10) assert prediction.shape == (self.x_test.shape[0], 1) assert uncertainty.shape == (self.x_test.shape[0], 1) assert np.any(uncertainty) new_model = VanillaLSTM(check_optional_config=False) dirname = tempfile.mkdtemp(prefix="automl_test_feature") try: save(dirname, model=self.model) restore(dirname, model=new_model, config=self.config) prediction, uncertainty = new_model.predict_with_uncertainty( self.x_test, n_iter=2) assert prediction.shape == (self.x_test.shape[0], 1) assert uncertainty.shape == (self.x_test.shape[0], 1) assert np.any(uncertainty) finally: shutil.rmtree(dirname)
class TestVanillaLSTM(ZooTestCase): def setup_method(self, method): # super().setup_method(method) train_data = pd.DataFrame(data=np.random.randn(64, 4)) val_data = pd.DataFrame(data=np.random.randn(16, 4)) test_data = pd.DataFrame(data=np.random.randn(16, 4)) future_seq_len = 1 past_seq_len = 6 # use roll method in time_sequence tsft = TimeSequenceFeatureTransformer() self.x_train, self.y_train = tsft._roll_train( train_data, past_seq_len=past_seq_len, future_seq_len=future_seq_len) self.x_val, self.y_val = tsft._roll_train( val_data, past_seq_len=past_seq_len, future_seq_len=future_seq_len) self.x_test = tsft._roll_test(test_data, past_seq_len=past_seq_len) self.config = { 'epochs': 1, "lr": 0.001, "lstm_1_units": 16, "dropout_1": 0.2, "lstm_2_units": 10, "dropout_2": 0.2, "batch_size": 32, } self.model = VanillaLSTM(check_optional_config=False, future_seq_len=future_seq_len) def teardown_method(self, method): pass def test_fit_eval(self): print("fit_eval:", self.model.fit_eval(self.x_train, self.y_train, **self.config)) def test_fit_eval_mc(self): print( "fit_eval:", self.model.fit_eval(self.x_train, self.y_train, mc=True, **self.config)) def test_evaluate(self): self.model.fit_eval(self.x_train, self.y_train, **self.config) mse, rs = self.model.evaluate(self.x_val, self.y_val, metric=['mse', 'r2']) print("Mean squared error is:", mse) print("R square is:", rs) def test_predict(self): self.model.fit_eval(self.x_train, self.y_train, **self.config) self.y_pred = self.model.predict(self.x_test) assert self.y_pred.shape == (self.x_test.shape[0], 1) def test_save_restore(self): new_model = VanillaLSTM(check_optional_config=False) self.model.fit_eval(self.x_train, self.y_train, **self.config) predict_before = self.model.predict(self.x_test) dirname = tempfile.mkdtemp(prefix="automl_test_vanilla") try: save(dirname, model=self.model) restore(dirname, model=new_model, config=self.config) predict_after = new_model.predict(self.x_test) assert_array_almost_equal(predict_before, predict_after, decimal=2) new_config = {'epochs': 2} new_model.fit_eval(self.x_train, self.y_train, **new_config) finally: shutil.rmtree(dirname) def test_predict_with_uncertainty(self, ): self.model.fit_eval(self.x_train, self.y_train, mc=True, **self.config) prediction, uncertainty = self.model.predict_with_uncertainty( self.x_test, n_iter=10) assert prediction.shape == (self.x_test.shape[0], 1) assert uncertainty.shape == (self.x_test.shape[0], 1) assert np.any(uncertainty) new_model = VanillaLSTM(check_optional_config=False) dirname = tempfile.mkdtemp(prefix="automl_test_feature") try: save(dirname, model=self.model) restore(dirname, model=new_model, config=self.config) prediction, uncertainty = new_model.predict_with_uncertainty( self.x_test, n_iter=2) assert prediction.shape == (self.x_test.shape[0], 1) assert uncertainty.shape == (self.x_test.shape[0], 1) assert np.any(uncertainty) finally: shutil.rmtree(dirname)