def gen_rand_user_item_feature(user_num, item_num, class_num): user_id = random.randint(1, user_num) item_id = random.randint(1, item_num) rating = random.randint(1, class_num) sample = Sample.from_ndarray(np.array([user_id, item_id]), np.array([rating])) return UserItemFeature(user_id, item_id, sample)
def to_user_item_feature(row, column_info, model_type="wide_n_deep"): """ convert a row to UserItemFeature given column feature information of a WideAndDeep model :param row: Row of userId, itemId, features and label :param column_info: ColumnFeatureInfo specify information of different features :return: UserItemFeature for recommender model """ return UserItemFeature(row["userId"], row["itemId"], row_to_sample(row, column_info, model_type))
def to_user_item_feature(row, column_info, model_type="wide_n_deep"): return UserItemFeature(row["userId"], row["itemId"], row_to_sample(row, column_info, model_type))
def build_sample(user_id, item_id, rating): sample = Sample.from_ndarray(np.array([user_id, item_id]), np.array([rating])) return UserItemFeature(user_id, item_id, sample)