示例#1
0
def main(option):
    sc = init_nncontext()

    def input_fn(mode, params):

        if mode == tf.estimator.ModeKeys.TRAIN:
            image_set = ImageSet.read(params["image_path"],
                                      sc=sc,
                                      with_label=True,
                                      one_based_label=False)
            train_transformer = ChainedPreprocessing([
                ImageBytesToMat(),
                ImageResize(256, 256),
                ImageRandomCrop(224, 224),
                ImageRandomPreprocessing(ImageHFlip(), 0.5),
                ImageChannelNormalize(0.485, 0.456, 0.406, 0.229, 0.224,
                                      0.225),
                ImageMatToTensor(to_RGB=True, format="NHWC"),
                ImageSetToSample(input_keys=["imageTensor"],
                                 target_keys=["label"])
            ])
            feature_set = FeatureSet.image_frame(image_set.to_image_frame())
            feature_set = feature_set.transform(train_transformer)
            feature_set = feature_set.transform(ImageFeatureToSample())
            dataset = TFDataset.from_feature_set(feature_set,
                                                 features=(tf.float32,
                                                           [224, 224, 3]),
                                                 labels=(tf.int32, [1]),
                                                 batch_size=16)
        else:
            raise NotImplementedError

        return dataset

    def model_fn(features, labels, mode, params):
        from nets import inception
        slim = tf.contrib.slim
        labels = tf.squeeze(labels, axis=1)
        with slim.arg_scope(inception.inception_v1_arg_scope()):
            logits, end_points = inception.inception_v1(
                features,
                num_classes=int(params["num_classes"]),
                is_training=True)

        if mode == tf.estimator.ModeKeys.TRAIN:
            loss = tf.reduce_mean(
                tf.losses.sparse_softmax_cross_entropy(logits=logits,
                                                       labels=labels))
            return TFEstimatorSpec(mode, predictions=logits, loss=loss)
        else:
            raise NotImplementedError

    estimator = TFEstimator(model_fn,
                            tf.train.AdamOptimizer(),
                            params={
                                "image_path": option.image_path,
                                "num_classes": option.num_classes
                            })

    estimator.train(input_fn, steps=100)
示例#2
0
def run_inference_on_image(image):
    """Runs inference on an image.

  Args:
    image: Image file name.

  Returns:
    Nothing
  """
    if not tf.gfile.Exists(image):
        tf.logging.fatal('File does not exist %s', image)
    from PIL import Image
    image_array = np.array(Image.open(image))[:, :, 0:3]

    # Define functions for Estimator
    def model_fn(features, labels, mode):
        create_graph(features)
        if mode == tf.estimator.ModeKeys.PREDICT:
            softmax_tensor = tf.get_default_graph().get_tensor_by_name(
                'softmax:0')
            return TFEstimatorSpec(mode, predictions=softmax_tensor)
        else:
            raise NotImplementedError

    def input_fn(mode):
        if mode == tf.estimator.ModeKeys.PREDICT:
            # get the TFDataset
            image_dataset = TFDataset.from_ndarrays(image_array[None, ...])
            return image_dataset
        else:
            raise NotImplementedError

    estimator = TFEstimator(model_fn)
    predictions = estimator.predict(input_fn).collect()
    predictions = np.squeeze(predictions)

    # Creates node ID --> English string lookup.
    node_lookup = NodeLookup()

    top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]
    for node_id in top_k:
        human_string = node_lookup.id_to_string(node_id)
        score = predictions[node_id]
        print('%s (score = %.5f)' % (human_string, score))
示例#3
0
    def test_estimator_for_imageset(self):

        model_fn = self.create_model_fn()
        input_fn = self.create_imageset_input_fn()

        estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())
        estimator.train(input_fn, steps=1)
        estimator.evaluate(input_fn, ["acc"])
        results = estimator.predict(input_fn).get_predict().collect()
        assert all(r[1] is not None for r in results)
示例#4
0
    def test_gradient_clipping(self):

        model_fn = self.create_model_fn()
        input_fn = self.create_train_feature_set_input_fn()

        estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())
        estimator.set_constant_gradient_clipping(-1e-8, 1e8)
        estimator.train(input_fn, steps=1)
示例#5
0
    def test_init_TFDataset_from_ndarrays(self):

        model_fn = self.create_model_fn()

        def input_fn(mode):
            x = np.random.rand(20, 10)
            y = np.random.randint(0, 10, (20,))
            if mode == tf.estimator.ModeKeys.TRAIN:
                return TFDataset.from_ndarrays((x, y), batch_size=8)
            elif mode == tf.estimator.ModeKeys.EVAL:
                return TFDataset.from_ndarrays((x, y), batch_per_thread=1)
            else:
                return TFDataset.from_ndarrays(x, batch_per_thread=1)

        estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())
        estimator.train(input_fn, 10)
        estimator.evaluate(input_fn, ["acc"])
        estimator.predict(input_fn)
    def test_estimator_without_batch(self):
        def model_fn(features, labels, mode):

            assert features.shape.ndims == 1
            if labels is not None:
                assert labels.shape.ndims == 0

            features = tf.expand_dims(features, axis=0)

            h1 = tf.layers.dense(features, 64, activation=tf.nn.relu)
            h2 = tf.layers.dense(h1, 64, activation=tf.nn.relu)
            logits = tf.layers.dense(h2, 10)

            if mode == tf.estimator.ModeKeys.EVAL or mode == tf.estimator.ModeKeys.TRAIN:
                labels = tf.expand_dims(labels, axis=0)
                loss = tf.reduce_mean(
                    tf.losses.sparse_softmax_cross_entropy(logits=logits,
                                                           labels=labels))
                return TFEstimatorSpec(mode, predictions=logits, loss=loss)
            else:
                return TFEstimatorSpec(mode, predictions=logits)

        def input_fn(mode):
            np.random.seed(20)
            x = np.random.rand(20, 10)
            y = np.random.randint(0, 10, (20))

            rdd_x = self.sc.parallelize(x)
            rdd_y = self.sc.parallelize(y)

            rdd = rdd_x.zip(rdd_y)
            if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
                dataset = TFDataset.from_rdd(rdd,
                                             features=(tf.float32, [10]),
                                             labels=(tf.int32, []))
            else:
                dataset = TFDataset.from_rdd(rdd_x,
                                             features=(tf.float32, [10]))
            return dataset

        estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())

        self.intercept(
            lambda: estimator.train(input_fn, steps=1),
            "The batch_size of TFDataset must be specified when used for training."
        )

        estimator.evaluate(input_fn, ["acc"])
        estimator.predict(input_fn).collect()
def main():
    sc = init_nncontext()

    def model_fn(features, labels, mode):
        from nets import lenet
        slim = tf.contrib.slim
        with slim.arg_scope(lenet.lenet_arg_scope()):
            logits, end_points = lenet.lenet(features,
                                             num_classes=10,
                                             is_training=True)

        if mode == tf.estimator.ModeKeys.EVAL or mode == tf.estimator.ModeKeys.TRAIN:
            loss = tf.reduce_mean(
                tf.losses.sparse_softmax_cross_entropy(logits=logits,
                                                       labels=labels))
            return TFEstimatorSpec(mode, predictions=logits, loss=loss)
        else:
            return TFEstimatorSpec(mode, predictions=logits)

    def input_fn(mode):
        if mode == tf.estimator.ModeKeys.TRAIN:
            training_rdd = get_data_rdd("train", sc)
            dataset = TFDataset.from_rdd(training_rdd,
                                         features=(tf.float32, [28, 28, 1]),
                                         labels=(tf.int32, []),
                                         batch_size=320)
        elif mode == tf.estimator.ModeKeys.EVAL:
            testing_rdd = get_data_rdd("test", sc)
            dataset = TFDataset.from_rdd(testing_rdd,
                                         features=(tf.float32, [28, 28, 1]),
                                         labels=(tf.int32, []),
                                         batch_size=320)
        else:
            testing_rdd = get_data_rdd("test", sc).map(lambda x: x[0])
            dataset = TFDataset.from_rdd(testing_rdd,
                                         features=(tf.float32, [28, 28, 1]),
                                         batch_per_thread=80)

        return dataset

    estimator = TFEstimator(model_fn,
                            tf.train.AdamOptimizer(),
                            model_dir="/tmp/estimator")

    estimator.train(input_fn, steps=60000 // 320)

    metrics = estimator.evaluate(input_fn, ["acc"])
    print(metrics)

    predictions = estimator.predict(input_fn)

    print(predictions.first())
示例#8
0
 def test_predict(self):
     model_fn = self.create_model_fn()
     input_fn = self.create_input_fn()
     estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())
     results = estimator.predict(input_fn).collect()
示例#9
0
 def test_evaluating(self):
     model_fn = self.create_model_fn()
     input_fn = self.create_input_fn()
     estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())
     eval_results = estimator.evaluate(input_fn, ["acc"])
     assert len(eval_results) > 0
示例#10
0
 def test_training(self):
     model_fn = self.create_model_fn()
     input_fn = self.create_input_fn()
     estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())
     estimator.train(input_fn, steps=60000 // 320)
示例#11
0
    def test_estimator_for_feature_set(self):
        model_fn = self.create_model_fn()
        input_fn = self.create_train_feature_set_input_fn()

        estimator = TFEstimator(model_fn, tf.train.AdamOptimizer())
        estimator.train(input_fn, steps=1)