def init_orca_context(cluster_mode="local", cores=2, memory="2g", num_nodes=1, init_ray_on_spark=False, **kwargs): """ Creates or gets a SparkContext for different Spark cluster modes (and launch Ray services across the cluster if necessary). :param cluster_mode: The mode for the Spark cluster. One of "local", "yarn-client", "k8s-client", "standalone" and "spark-submit". Default to be "local". For "spark-submit", you are supposed to use spark-submit to submit the application. In this case, please set the Spark configurations through command line options or the properties file. You need to use "spark-submit" for yarn-cluster or k8s-cluster mode. To make things easier, you are recommended to use the launch scripts we provide: https://github.com/intel-analytics/analytics-zoo/tree/master/scripts. For other cluster modes, you are recommended to install and run analytics-zoo through pip, which is more convenient. :param cores: The number of cores to be used on each node. Default to be 2. :param memory: The memory allocated for each node. Default to be '2g'. :param num_nodes: The number of nodes to be used in the cluster. Default to be 1. For Spark local, num_nodes should always be 1 and you don't need to change it. :param init_ray_on_spark: Whether to launch Ray services across the cluster. Default to be False and in this case the Ray cluster would be launched lazily when Ray is involved in Project Orca. :param kwargs: The extra keyword arguments used for creating SparkContext and launching Ray if any. :return: An instance of SparkContext. """ print("Initializing orca context") import atexit atexit.register(stop_orca_context) cluster_mode = cluster_mode.lower() spark_args = {} for key in ["conf", "spark_log_level", "redirect_spark_log"]: if key in kwargs: spark_args[key] = kwargs[key] if cluster_mode == "spark-submit": from zoo import init_nncontext sc = init_nncontext(**spark_args) elif cluster_mode == "local": assert num_nodes == 1, "For Spark local mode, num_nodes should be 1" os.environ["SPARK_DRIVER_MEMORY"] = memory if "python_location" in kwargs: spark_args["python_location"] = kwargs["python_location"] from zoo import init_spark_on_local sc = init_spark_on_local(cores, **spark_args) elif cluster_mode.startswith("yarn"): # yarn or yarn-client if cluster_mode == "yarn-cluster": raise ValueError( 'For yarn-cluster mode, please set cluster_mode to "spark-submit" ' 'and submit the application via spark-submit instead') hadoop_conf = os.environ.get("HADOOP_CONF_DIR") if not hadoop_conf: assert "hadoop_conf" in kwargs,\ "Directory path to hadoop conf not found for yarn-client mode. Please either " \ "specify argument hadoop_conf or set the environment variable HADOOP_CONF_DIR" hadoop_conf = kwargs["hadoop_conf"] from zoo.util.utils import detect_conda_env_name conda_env_name = detect_conda_env_name() for key in [ "driver_cores", "driver_memory", "extra_executor_memory_for_ray", "extra_python_lib", "penv_archive", "additional_archive", "hadoop_user_name", "spark_yarn_archive", "jars" ]: if key in kwargs: spark_args[key] = kwargs[key] from zoo import init_spark_on_yarn sc = init_spark_on_yarn(hadoop_conf=hadoop_conf, conda_name=conda_env_name, num_executors=num_nodes, executor_cores=cores, executor_memory=memory, **spark_args) elif cluster_mode.startswith("k8s"): # k8s or k8s-client if cluster_mode == "k8s-cluster": raise ValueError( 'For k8s-cluster mode, please set cluster_mode to "spark-submit" ' 'and submit the application via spark-submit instead') assert "master" in kwargs, "Please specify master for k8s-client mode" assert "container_image" in kwargs, "Please specify container_image for k8s-client mode" for key in [ "driver_cores", "driver_memory", "extra_executor_memory_for_ray", "extra_python_lib", "jars", "python_location" ]: if key in kwargs: spark_args[key] = kwargs[key] from zoo import init_spark_on_k8s sc = init_spark_on_k8s(master=kwargs["master"], container_image=kwargs["container_image"], num_executors=num_nodes, executor_cores=cores, executor_memory=memory, **spark_args) elif cluster_mode == "standalone": for key in [ "driver_cores", "driver_memory", "extra_executor_memory_for_ray", "extra_python_lib", "jars", "master", "python_location", "enable_numa_binding" ]: if key in kwargs: spark_args[key] = kwargs[key] from zoo import init_spark_standalone sc = init_spark_standalone(num_executors=num_nodes, executor_cores=cores, executor_memory=memory, **spark_args) else: raise ValueError( "cluster_mode can only be local, yarn-client, standalone or spark-submit, " "but got: %s".format(cluster_mode)) ray_args = {} for key in [ "redis_port", "password", "object_store_memory", "verbose", "env", "extra_params", "num_ray_nodes", "ray_node_cpu_cores", "include_webui" ]: if key in kwargs: ray_args[key] = kwargs[key] from zoo.ray import RayContext ray_ctx = RayContext(sc, **ray_args) if init_ray_on_spark: driver_cores = 0 # This is the default value. if "driver_cores" in kwargs: driver_cores = kwargs["driver_cores"] ray_ctx.init(driver_cores=driver_cores) return sc
return x if __name__ == '__main__': if len(sys.argv) != 2: print(sys.argv) print("Need parameters: <imagePath>") sys.exit(-1) hadoop_conf_dir = os.environ.get('HADOOP_CONF_DIR') if hadoop_conf_dir: num_executors = 2 num_cores_per_executor = 4 zoo_conda_name = detect_conda_env_name( ) # auto detect current conda env name sc = init_spark_on_yarn(hadoop_conf=hadoop_conf_dir, conda_name=zoo_conda_name, num_executors=num_executors, executor_cores=num_cores_per_executor, executor_memory="8g", driver_memory="2g", driver_cores=1) else: num_cores_per_executor = 4 sc = init_spark_on_local(cores=num_cores_per_executor, conf={"spark.driver.memory": "10g"}) model = CatDogModel() zoo_model = TorchModel.from_pytorch(model)
def main(): parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument( '-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--cores', default=4, type=int, help='num of CPUs to use.') parser.add_argument('--nodes', default=1, type=int, help='num of nodes to use.') parser.add_argument('--executor_memory', default='20g', type=str, help='size of executor memory.') parser.add_argument('--driver_memory', default='20g', type=str, help='size of driver memory.') parser.add_argument('--driver_cores', default=1, type=int, help='num of driver cores to use.') args = parser.parse_args() if os.environ.get('HADOOP_CONF_DIR') is None: sc = init_spark_on_local(cores=args.cores, conf={"spark.driver.memory": "20g"}) else: hadoop_conf_dir = os.environ.get('HADOOP_CONF_DIR') num_executors = args.nodes executor_memory = args.executor_memory driver_memory = args.driver_memory driver_cores = args.driver_cores num_cores_per_executor = args.cores os.environ['ZOO_MKL_NUMTHREADS'] = str(num_cores_per_executor) os.environ['OMP_NUM_THREADS'] = str(num_cores_per_executor) sc = init_spark_on_yarn( hadoop_conf=hadoop_conf_dir, conda_name=detect_conda_env_name( ), # auto detect current conda env name num_executors=num_executors, executor_cores=num_cores_per_executor, executor_memory=executor_memory, driver_memory=driver_memory, driver_cores=driver_cores, conf={ "spark.rpc.message.maxSize": "1024", "spark.task.maxFailures": "1", "spark.driver.extraJavaOptions": "-Dbigdl.failure.retryTimes=1" }) # Data loading code traindir = os.path.join(args.data, 'train') valdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( traindir, transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) model = torchvision.models.resnet50() val_loader = torch.utils.data.DataLoader(datasets.ImageFolder( valdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])), batch_size=args.batch_size, shuffle=False) iterationPerEpoch = int(math.ceil(float(1281167) / args.batch_size)) step = Step(iterationPerEpoch * 30, 0.1) zooOptimizer = SGD(args.lr, momentum=args.momentum, dampening=0.0, leaningrate_schedule=step, weightdecay=args.weight_decay) zooModel = TorchModel.from_pytorch(model) criterion = torch.nn.CrossEntropyLoss() zooCriterion = TorchLoss.from_pytorch(criterion) estimator = Estimator(zooModel, optim_methods=zooOptimizer) train_featureSet = FeatureSet.pytorch_dataloader(train_loader) test_featureSet = FeatureSet.pytorch_dataloader(val_loader) estimator.train_minibatch(train_featureSet, zooCriterion, end_trigger=MaxEpoch(90), checkpoint_trigger=EveryEpoch(), validation_set=test_featureSet, validation_method=[Accuracy(), Top5Accuracy()])