示例#1
0
    def test_theta_weak_dominate(self):
        sol1 = Solution(value=[1, 2])
        sol2 = Solution(value=[4, 2])
        assert PONSS.theta_weak_dominate(3, sol1, sol2) is True
        assert PONSS.theta_weak_dominate(3.1, sol1, sol2) is False


#     def test_performance(self):
#         # load data file
#         mse = SparseMSE('example/sparse_regression/sonar.arff')
#         mse.set_sparsity(8)
#
#         # setup objective
#         objective = Objective(func=mse.loss, dim=mse.get_dim(), constraint=mse.constraint)
#         # ponss_theta and ponss_b are parameters used in PONSS algorithm and should be provided by users. ponss_theta stands
#         # for the threshold. ponss_b limits the number of solutions in the population set.
#         budget = int(2 * exp(1) * (mse.get_sparsity() ** 2) * mse.get_dim().get_size())
#         parameter = Parameter(algorithm='poss', noise_handling=True, ponss=True, ponss_theta=0.5, ponss_b=mse.get_k(),
#                               budget=budget)
#         # perform sparse regression with constraint |w|_0 <= k
#         solution = Opt.min(objective, parameter)
#         assert solution.get_value()[0] < 0.7
#
#
# if __name__ == '__main__':
#     tp = TestPONSS()
#     tp.test_performance()
示例#2
0
 def test_racos_common_is_distinct(self):
     a = Solution(x=[1, 2, 3])
     b = Solution(x=[2, 3, 4])
     c = Solution(x=[3, 4, 5])
     seti = [a, b]
     assert RacosCommon.is_distinct(
         seti, a) is False and RacosCommon.is_distinct(seti, c) is True
示例#3
0
 def test_sracos_strategy_lm(self):
     s0 = Solution(x=[1, 1, 1], value=0)
     s1 = Solution(x=[2.2, 2.2, 2.2], value=1)
     s2 = Solution(x=[3, 3, 3], value=2)
     iset = [s0, s1, s2]
     sracos = SRacos()
     test_s1 = Solution(x=[2.1, 2.1, 2.1], value=2.1)
     sracos.strategy_lm(iset, s0, test_s1)
     assert iset[2].get_value() == 2.1
示例#4
0
 def test_theta_dominate(self):
     sol1 = Solution(value=[1, 2])
     sol2 = Solution(value=[4, 2])
     assert PONSS.theta_dominate(2.9, sol1,
                                 sol2) is True and PONSS.theta_dominate(
                                     3, sol1, sol2) is False
     sol3 = Solution(value=[2, 3])
     sol4 = Solution(value=[3, 2])
     assert PONSS.theta_dominate(1, sol1, sol2) is True
示例#5
0
 def test_find_maximum_and_minimum(self):
     sol1 = Solution(x=[1, 2, 3], value=1)
     sol2 = Solution(x=[1, 3, 4], value=2)
     sol3 = Solution(x=[1, 5, 6], value=3)
     sol_set = [sol1, sol2, sol3]
     assert sol1.is_equal(Solution.find_minimum(sol_set)[0])
     assert sol3.is_equal(Solution.find_maximum(sol_set)[0])
示例#6
0
 def test_sracos_strategy_rr(self):
     s0 = Solution(value=0)
     s1 = Solution(value=1)
     s2 = Solution(value=2)
     iset = [s0, s1, s2]
     sracos = SRacos()
     test_s1 = Solution(value=2.1)
     sracos.strategy_rr(iset, test_s1)
     assert len(iset) == 3 and (iset[0].get_value() == 2.1
                                or iset[1].get_value() == 2.1
                                or iset[2].get_value() == 2.1)
示例#7
0
 def test_deep_copy_set(self):
     sol1 = Solution(x=[1, 2, 3])
     sol2 = Solution(x=[1, 3, 4])
     sol3 = Solution(x=[1, 5, 6])
     sol_set_1 = [sol1, sol2, sol3]
     sol_set_2 = Solution.deep_copy_set(sol_set_1)
     if len(sol_set_1) != len(sol_set_2):
         assert 0
     for i in range(len(sol_set_1)):
         if sol_set_1[i].is_equal(sol_set_2[i]) is False:
             assert 0
     assert 1
示例#8
0
文件: zoopt.py 项目: NickKok/test-Ray
    def _setup_zoopt(self):
        if self._metric is None and self._mode:
            # If only a mode was passed, use anonymous metric
            self._metric = DEFAULT_METRIC

        _dim_list = []
        for k in self._dim_dict:
            self._dim_keys.append(k)
            _dim_list.append(self._dim_dict[k])

        init_samples = None
        if self._points_to_evaluate:
            logger.warning(
                "`points_to_evaluate` seems to be ignored by ZOOpt.")
            init_samples = [
                Solution(x=tuple(point[dim] for dim in self._dim_keys))
                for point in self._points_to_evaluate
            ]
        dim = zoopt.Dimension2(_dim_list)
        par = zoopt.Parameter(budget=self._budget, init_samples=init_samples)
        if self._algo == "sracos" or self._algo == "asracos":
            from zoopt.algos.opt_algorithms.racos.sracos import SRacosTune
            self.optimizer = SRacosTune(dimension=dim,
                                        parameter=par,
                                        parallel_num=self.parallel_num,
                                        **self.kwargs)
            if init_samples:
                self.optimizer.init_attribute()
示例#9
0
 def test_eval(self):
     dim = 100
     obj = Objective(func=ackley,
                     dim=Dimension(dim, [[-1, 1]] * dim, [True] * dim))
     sol = Solution(x=[0.2] * dim)
     res = obj.eval(sol)
     assert abs(res) <= 1e-7
示例#10
0
 def test_exist_equal(self):
     sol1 = Solution(x=[1, 2, 3])
     sol2 = Solution(x=[1, 3, 4])
     sol3 = Solution(x=[1, 5, 6])
     sol_set = [sol1, sol2]
     assert sol1.exist_equal(sol_set) is True
     assert sol3.exist_equal(sol_set) is False
示例#11
0
 def test_sracos_binary_search(self):
     s0 = Solution(value=0)
     s1 = Solution(value=1)
     s2 = Solution(value=2)
     s3 = Solution(value=3)
     s4 = Solution(value=4)
     # 1 3 0 2 4
     test_s1 = Solution(value=2.1)
     test_s2 = Solution(value=4.5)
     test_s3 = Solution(value=-1)
     test_s4 = Solution(value=2)
     set = [s0, s1, s2, s3, s4]
     sracos = SRacos()
     assert sracos.binary_search(set, test_s1, 0, 4) == 3
     assert sracos.binary_search(set, test_s1, 0, 2) == 3
     assert sracos.binary_search(set, test_s2, 0, 4) == 5
     assert sracos.binary_search(set, test_s3, 0, 4) == 0
     assert sracos.binary_search(set, test_s4, 0, 4) == 3
示例#12
0
 def test_resample(self):
     dim = 100
     obj = Objective(func=ackley,
                     dim=Dimension(dim, [[-1, 1]] * dim, [True] * dim))
     sol = Solution(x=[0.2] * dim)
     res = obj.eval(sol)
     obj.resample(sol, 3)
     assert abs(sol.get_value()) <= 1e-7
     sol.set_value(0)
     obj.resample_func(sol, 3)
     assert abs(sol.get_value()) <= 1e-7
示例#13
0
 def test_sracos_replace(self):
     s0 = Solution(x=[0, 0, 0], value=0.5)
     s1 = Solution(x=[1, 1, 1], value=1)
     s2 = Solution(x=[2, 2, 2], value=2)
     s3 = Solution(x=[3, 3, 3], value=3)
     s4 = Solution(x=[4, 4, 4], value=4)
     pos_set = [s0, s1, s2, s3, s4]
     neg_set = [s2, s3, s1, s4, s0]
     x = Solution(x=[2.1, 2.1, 2.1], value=0.1)
     sracos = SRacos()
     sracos.replace(pos_set, x, 'pos', 'WR')
     assert pos_set[4].get_value() == 3 and pos_set[0].get_value() == 0.1
     sracos.replace(neg_set, x, 'neg', 'LM')
     assert neg_set[3].get_value() == 0.1
示例#14
0
 def test_sracos_strategy_wr(self):
     s0 = Solution(value=0)
     s1 = Solution(value=1)
     s2 = Solution(value=2)
     s3 = Solution(value=3)
     s4 = Solution(value=4)
     iset = [s0, s1, s2, s3, s4]
     sracos = SRacos()
     test_s1 = Solution(value=2.1)
     sracos.strategy_wr(iset, test_s1, 'pos')
     assert len(iset) == 5 and iset[0].get_value() == 0 and iset[1].get_value() == 1 and iset[2].get_value() == 2 \
         and iset[3].get_value() == 2.1 and iset[4].get_value() == 3
     iset2 = [s1, s3, s0, s2, s4]
     sracos.strategy_wr(iset2, test_s1, 'neg')
     assert len(iset2) == 5 and iset2[4].get_value() == 2.1
示例#15
0
 def test_theta_weak_dominate(self):
     sol1 = Solution(value=[1, 2])
     sol2 = Solution(value=[4, 2])
     assert PONSS.theta_weak_dominate(3, sol1, sol2) is True
     assert PONSS.theta_weak_dominate(3.1, sol1, sol2) is False
示例#16
0
"""
This file contains an example of how to optimize continuous ackley function.

Author:
    Yu-Ren Liu, Xiong-Hui Chen
"""

from zoopt import Dimension, Objective, Parameter, ExpOpt, Solution
from simple_function import ackley

if __name__ == '__main__':
    dim = 100  # dimension
    objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim))  # setup objective
    parameter = Parameter(budget=100 * dim, init_samples=[Solution([0] * 100)])  # init with init_samples
    solution_list = ExpOpt.min(objective, parameter, repeat=5, plot=False, plot_file="img/quick_start.png")
    for solution in solution_list:
        x = solution.get_x()
        value = solution.get_value()
        print(x, value)
示例#17
0
 def test_is_equal(self):
     sol1 = Solution(x=[1, 2, 3])
     sol2 = Solution(x=[1, 3, 4])
     assert sol1.is_equal(sol2) is False
     assert sol1.is_equal(sol1) is True
示例#18
0
 def test_deep_copy(self):
     sol1 = Solution(x=[1, 2, 3])
     sol2 = sol1.deep_copy()
     assert sol1.is_equal(sol2)