def __init__(self, args): self.args = args # Define Saver self.saver = Saver(args) self.saver.save_experiment_config() # Define Tensorboard Summary self.summary = TensorboardSummary(self.saver.experiment_dir) self.writer = self.summary.create_summary() # Define Dataloader kwargs = {"num_workers": args.workers, "pin_memory": True} ( self.train_loader, self.val_loader, _, self.nclass, ) = make_data_loader(args, **kwargs) # Define network model = DeepLab( num_classes=self.nclass, output_stride=args.out_stride, sync_bn=args.sync_bn, freeze_bn=args.freeze_bn, imagenet_pretrained_path=args.imagenet_pretrained_path, ) train_params = [ { "params": model.get_1x_lr_params(), "lr": args.lr }, { "params": model.get_10x_lr_params(), "lr": args.lr * 10 }, ] # Define Optimizer optimizer = torch.optim.SGD( train_params, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov, ) # Define Criterion # whether to use class balanced weights if args.use_balanced_weights: classes_weights_path = ( DATASETS_DIRS[args.dataset] / args.dataset + "_classes_weights.npy") if os.path.isfile(classes_weights_path): weight = np.load(classes_weights_path) else: weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass) weight = torch.from_numpy(weight.astype(np.float32)) else: weight = None self.criterion = SegmentationLosses( weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type) self.model, self.optimizer = model, optimizer # Define Evaluator self.evaluator = Evaluator(self.nclass, args.seen_classes_idx_metric, args.unseen_classes_idx_metric) # Define lr scheduler self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.train_loader)) # Using cuda if args.cuda: self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids) patch_replication_callback(self.model) self.model = self.model.cuda() # Resuming checkpoint self.best_pred = 0.0 if args.resume is not None: if not os.path.isfile(args.resume): raise RuntimeError( f"=> no checkpoint found at '{args.resume}'") checkpoint = torch.load(args.resume) args.start_epoch = checkpoint["epoch"] if args.random_last_layer: checkpoint["state_dict"][ "decoder.pred_conv.weight"] = torch.rand(( self.nclass, checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[1], checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[2], checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[3], )) checkpoint["state_dict"][ "decoder.pred_conv.bias"] = torch.rand(self.nclass) if args.nonlinear_last_layer: if args.cuda: self.model.module.deeplab.load_state_dict( checkpoint["state_dict"]) else: self.model.deeplab.load_state_dict( checkpoint["state_dict"]) else: if args.cuda: self.model.module.load_state_dict(checkpoint["state_dict"]) else: self.model.load_state_dict(checkpoint["state_dict"]) if not args.ft: if not args.nonlinear_last_layer: self.optimizer.load_state_dict(checkpoint["optimizer"]) self.best_pred = checkpoint["best_pred"] print( f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})" ) # Clear start epoch if fine-tuning if args.ft: args.start_epoch = 0
def __init__(self, args): self.args = args # Define Saver self.saver = Saver(args) self.saver.save_experiment_config() # Define Tensorboard Summary self.summary = TensorboardSummary(self.saver.experiment_dir) self.writer = self.summary.create_summary() """ Get dataLoader """ # config = get_config(args.config) # vals_cls, valu_cls, all_labels, visible_classes, visible_classes_test, train, val, sampler, _, cls_map, cls_map_test = get_split(config) # assert (visible_classes_test.shape[0] == config['dis']['out_dim_cls'] - 1) # print('seen_classes', vals_cls) # print('novel_classes', valu_cls) # print('all_labels', all_labels) # print('visible_classes', visible_classes) # print('visible_classes_test', visible_classes_test) # print('train', train[:10], len(train)) # print('val', val[:10], len(val)) # print('cls_map', cls_map) # print('cls_map_test', cls_map_test) # Define Dataloader kwargs = {"num_workers": args.workers, "pin_memory": True} ( self.train_loader, self.val_loader, _, self.nclass, ) = make_data_loader(args, load_embedding=args.load_embedding, w2c_size=args.w2c_size, **kwargs) print('self.nclass', self.nclass) # 33 model = DeepLab( num_classes=self.nclass, output_stride=args.out_stride, sync_bn=args.sync_bn, freeze_bn=args.freeze_bn, global_avg_pool_bn=args.global_avg_pool_bn, imagenet_pretrained_path=args.imagenet_pretrained_path, ) train_params = [ { "params": model.get_1x_lr_params(), "lr": args.lr }, { "params": model.get_10x_lr_params(), "lr": args.lr * 10 }, ] # Define Optimizer optimizer = torch.optim.SGD( train_params, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov, ) # Define Generator generator = GMMNnetwork(args.noise_dim, args.embed_dim, args.hidden_size, args.feature_dim) optimizer_generator = torch.optim.Adam(generator.parameters(), lr=args.lr_generator) class_weight = torch.ones(self.nclass) class_weight[args.unseen_classes_idx_metric] = args.unseen_weight if args.cuda: class_weight = class_weight.cuda() self.criterion = SegmentationLosses( weight=class_weight, cuda=args.cuda).build_loss(mode=args.loss_type) self.model, self.optimizer = model, optimizer self.criterion_generator = GMMNLoss(sigma=[2, 5, 10, 20, 40, 80], cuda=args.cuda).build_loss() self.generator, self.optimizer_generator = generator, optimizer_generator # Define Evaluator self.evaluator = Evaluator(self.nclass, args.seen_classes_idx_metric, args.unseen_classes_idx_metric) # Define lr scheduler self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.train_loader)) # Using cuda if args.cuda: self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids) patch_replication_callback(self.model) self.model = self.model.cuda() self.generator = self.generator.cuda() # Resuming checkpoint self.best_pred = 0.0 if args.resume is not None: if not os.path.isfile(args.resume): raise RuntimeError( f"=> no checkpoint found at '{args.resume}'") checkpoint = torch.load(args.resume) # args.start_epoch = checkpoint['epoch'] if args.random_last_layer: checkpoint["state_dict"][ "decoder.pred_conv.weight"] = torch.rand(( self.nclass, checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[1], checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[2], checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[3], )) checkpoint["state_dict"][ "decoder.pred_conv.bias"] = torch.rand(self.nclass) if args.cuda: self.model.module.load_state_dict(checkpoint["state_dict"]) else: self.model.load_state_dict(checkpoint["state_dict"]) # self.best_pred = checkpoint['best_pred'] print( f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})" ) # Clear start epoch if fine-tuning if args.ft: args.start_epoch = 0
def __init__(self, args): self.args = args # Define Saver self.saver = Saver(args) self.saver.save_experiment_config() # Define Tensorboard Summary self.summary = TensorboardSummary(self.saver.experiment_dir) self.writer = self.summary.create_summary() """ Get dataLoader """ # config = get_config(args.config) # vals_cls, valu_cls, all_labels, visible_classes, visible_classes_test, train, val, sampler, _, cls_map, cls_map_test = get_split(config) # assert (visible_classes_test.shape[0] == config['dis']['out_dim_cls'] - 1) # print('seen_classes', vals_cls) # print('novel_classes', valu_cls) # print('all_labels', all_labels) # print('visible_classes', visible_classes) # print('visible_classes_test', visible_classes_test) # print('train', train[:10], len(train)) # print('val', val[:10], len(val)) # print('cls_map', cls_map) # print('cls_map_test', cls_map_test) kwargs = {"num_workers": args.workers, "pin_memory": True} ( self.train_loader, self.val_loader, _, self.nclass, ) = make_data_loader(args, **kwargs) print('self.nclass', self.nclass) # Define network model = DeepLab( num_classes=self.nclass, output_stride=args.out_stride, sync_bn=args.sync_bn, freeze_bn=False, pretrained=args.imagenet_pretrained, imagenet_pretrained_path=args.imagenet_pretrained_path, ) train_params = [ { "params": model.get_1x_lr_params(), "lr": args.lr }, { "params": model.get_10x_lr_params(), "lr": args.lr * 10 }, ] # Define Optimizer optimizer = torch.optim.SGD( train_params, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov, ) # Define Criterion # whether to use class balanced weights if args.use_balanced_weights: classes_weights_path = ( DATASETS_DIRS[args.dataset] / args.dataset + "_classes_weights.npy") if os.path.isfile(classes_weights_path): weight = np.load(classes_weights_path) else: weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass) weight = torch.from_numpy(weight.astype(np.float32)) else: weight = None self.criterion = SegmentationLosses( weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type) self.model, self.optimizer = model, optimizer if args.imagenet_pretrained_path is not None: state_dict = torch.load(args.imagenet_pretrained_path) if 'state_dict' in state_dict.keys(): self.model.load_state_dict(state_dict['state_dict']) else: #print(model.state_dict().keys())#['scale.layer1.conv1.conv.weight']) #print(state_dict.items().keys()) new_dict = {} for k, v in state_dict.items(): #print(k[11:]) new_dict[k[11:]] = v self.model.load_state_dict( new_dict, strict=False ) # make strict=True to debug if checkpoint is loaded correctly or not if performance is low # Define Evaluator self.evaluator = Evaluator(self.nclass) # Define lr scheduler self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.train_loader)) # Using cuda if args.cuda: self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids) patch_replication_callback(self.model) self.model = self.model.cuda() # Resuming checkpoint self.best_pred = 0.0 if args.resume is not None: if not os.path.isfile(args.resume): raise RuntimeError( f"=> no checkpoint found at '{args.resume}'") checkpoint = torch.load(args.resume) args.start_epoch = checkpoint["epoch"] if args.cuda: self.model.module.load_state_dict(checkpoint["state_dict"]) else: self.model.load_state_dict(checkpoint["state_dict"]) if not args.ft: self.optimizer.load_state_dict(checkpoint["optimizer"]) self.best_pred = checkpoint["best_pred"] print( f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})" ) # Clear start epoch if fine-tuning if args.ft: args.start_epoch = 0
def __init__(self, args): self.args = args # Define Saver self.saver = Saver(args) self.saver.save_experiment_config() # Define Tensorboard Summary self.summary = TensorboardSummary(self.saver.experiment_dir) self.writer = self.summary.create_summary() """ Get dataLoader """ config = get_config(args.config) vals_cls, valu_cls, all_labels, visible_classes, visible_classes_test, train, val, sampler, visibility_mask, cls_map, cls_map_test = get_split( config) assert (visible_classes_test.shape[0] == config['dis']['out_dim_cls'] - 1) dataset = get_dataset(config['DATAMODE'])( train=train, test=None, root=config['ROOT'], split=config['SPLIT']['TRAIN'], base_size=513, crop_size=config['IMAGE']['SIZE']['TRAIN'], mean=(config['IMAGE']['MEAN']['B'], config['IMAGE']['MEAN']['G'], config['IMAGE']['MEAN']['R']), warp=config['WARP_IMAGE'], scale=(0.5, 1.5), flip=True, visibility_mask=visibility_mask) print('train dataset:', len(dataset)) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=config['BATCH_SIZE']['TRAIN'], num_workers=config['NUM_WORKERS'], sampler=sampler) dataset_test = get_dataset(config['DATAMODE'])( train=None, test=val, root=config['ROOT'], split=config['SPLIT']['TEST'], base_size=513, crop_size=config['IMAGE']['SIZE']['TEST'], mean=(config['IMAGE']['MEAN']['B'], config['IMAGE']['MEAN']['G'], config['IMAGE']['MEAN']['R']), warp=config['WARP_IMAGE'], scale=None, flip=False) print('test dataset:', len(dataset_test)) loader_test = torch.utils.data.DataLoader( dataset=dataset_test, batch_size=config['BATCH_SIZE']['TEST'], num_workers=config['NUM_WORKERS'], shuffle=False) self.train_loader = loader self.val_loader = loader_test self.nclass = 34 # Define Dataloader # kwargs = {"num_workers": args.workers, "pin_memory": True} # (self.train_loader, self.val_loader, _, self.nclass,) = make_data_loader( # args, **kwargs # ) # Define network model = DeepLab( num_classes=self.nclass, output_stride=args.out_stride, sync_bn=args.sync_bn, freeze_bn=args.freeze_bn, pretrained=args.imagenet_pretrained, imagenet_pretrained_path=args.imagenet_pretrained_path, ) train_params = [ { "params": model.get_1x_lr_params(), "lr": args.lr }, { "params": model.get_10x_lr_params(), "lr": args.lr * 10 }, ] # Define Optimizer optimizer = torch.optim.SGD( train_params, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov, ) # Define Criterion # whether to use class balanced weights if args.use_balanced_weights: classes_weights_path = ( DATASETS_DIRS[args.dataset] / args.dataset + "_classes_weights.npy") if os.path.isfile(classes_weights_path): weight = np.load(classes_weights_path) else: weight = calculate_weigths_labels(args.dataset, self.train_loader, self.nclass) weight = torch.from_numpy(weight.astype(np.float32)) else: weight = None self.criterion = SegmentationLosses( weight=weight, cuda=args.cuda).build_loss(mode=args.loss_type) self.model, self.optimizer = model, optimizer # Define Evaluator self.evaluator = Evaluator(self.nclass) # Define lr scheduler self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.train_loader)) # Using cuda if args.cuda: self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids) patch_replication_callback(self.model) self.model = self.model.cuda() # Resuming checkpoint self.best_pred = 0.0 if args.resume is not None: if not os.path.isfile(args.resume): raise RuntimeError( f"=> no checkpoint found at '{args.resume}'") checkpoint = torch.load(args.resume) args.start_epoch = checkpoint["epoch"] if args.cuda: self.model.module.load_state_dict(checkpoint["state_dict"]) else: self.model.load_state_dict(checkpoint["state_dict"]) if not args.ft: self.optimizer.load_state_dict(checkpoint["optimizer"]) self.best_pred = checkpoint["best_pred"] print( f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})" ) # Clear start epoch if fine-tuning if args.ft: args.start_epoch = 0
def __init__(self, args): self.args = args # Define Saver self.saver = Saver(args) self.saver.save_experiment_config() # Define Tensorboard Summary self.summary = TensorboardSummary(self.saver.experiment_dir) self.writer = self.summary.create_summary() """ Get dataLoader """ config = get_config(args.config) vals_cls, valu_cls, all_labels, visible_classes, visible_classes_test, train, val, sampler, visibility_mask, cls_map, cls_map_test = get_split( config) assert (visible_classes_test.shape[0] == config['dis']['out_dim_cls'] - 1) dataset = get_dataset(config['DATAMODE'])( train=train, test=None, root=config['ROOT'], split=config['SPLIT']['TRAIN'], base_size=513, crop_size=config['IMAGE']['SIZE']['TRAIN'], mean=(config['IMAGE']['MEAN']['B'], config['IMAGE']['MEAN']['G'], config['IMAGE']['MEAN']['R']), warp=config['WARP_IMAGE'], scale=(0.5, 1.5), flip=True, visibility_mask=visibility_mask) print('train dataset:', len(dataset)) loader = torch.utils.data.DataLoader( dataset=dataset, batch_size=config['BATCH_SIZE']['TRAIN'], num_workers=config['NUM_WORKERS'], sampler=sampler) dataset_test = get_dataset(config['DATAMODE'])( train=None, test=val, root=config['ROOT'], split=config['SPLIT']['TEST'], base_size=513, crop_size=config['IMAGE']['SIZE']['TEST'], mean=(config['IMAGE']['MEAN']['B'], config['IMAGE']['MEAN']['G'], config['IMAGE']['MEAN']['R']), warp=config['WARP_IMAGE'], scale=None, flip=False) print('test dataset:', len(dataset_test)) loader_test = torch.utils.data.DataLoader( dataset=dataset_test, batch_size=config['BATCH_SIZE']['TEST'], num_workers=config['NUM_WORKERS'], shuffle=False) self.train_loader = loader self.val_loader = loader_test self.nclass = 21 # Define Dataloader kwargs = {"num_workers": args.workers, "pin_memory": True} ( self.train_loader, self.val_loader, _, self.nclass, ) = make_data_loader(args, load_embedding=args.load_embedding, w2c_size=args.w2c_size, **kwargs) print('self.nclass', self.nclass) # Define network model = DeepLab( num_classes=self.nclass, output_stride=args.out_stride, sync_bn=args.sync_bn, freeze_bn=args.freeze_bn, global_avg_pool_bn=args.global_avg_pool_bn, imagenet_pretrained_path=args.imagenet_pretrained_path, ) train_params = [ { "params": model.get_1x_lr_params(), "lr": args.lr }, { "params": model.get_10x_lr_params(), "lr": args.lr * 10 }, ] # Define Optimizer optimizer = torch.optim.SGD( train_params, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=args.nesterov, ) # Define Generator generator = GMMNnetwork(args.noise_dim, args.embed_dim, args.hidden_size, args.feature_dim) optimizer_generator = torch.optim.Adam(generator.parameters(), lr=args.lr_generator) class_weight = torch.ones(self.nclass) class_weight[args.unseen_classes_idx_metric] = args.unseen_weight if args.cuda: class_weight = class_weight.cuda() self.criterion = SegmentationLosses( weight=class_weight, cuda=args.cuda).build_loss(mode=args.loss_type) self.model, self.optimizer = model, optimizer self.criterion_generator = GMMNLoss(sigma=[2, 5, 10, 20, 40, 80], cuda=args.cuda).build_loss() self.generator, self.optimizer_generator = generator, optimizer_generator # Define Evaluator self.evaluator = Evaluator(self.nclass, args.seen_classes_idx_metric, args.unseen_classes_idx_metric) # Define lr scheduler self.scheduler = LR_Scheduler(args.lr_scheduler, args.lr, args.epochs, len(self.train_loader)) # Using cuda if args.cuda: self.model = torch.nn.DataParallel(self.model, device_ids=self.args.gpu_ids) patch_replication_callback(self.model) self.model = self.model.cuda() self.generator = self.generator.cuda() # Resuming checkpoint self.best_pred = 0.0 if args.resume is not None: if not os.path.isfile(args.resume): raise RuntimeError( f"=> no checkpoint found at '{args.resume}'") checkpoint = torch.load(args.resume) # args.start_epoch = checkpoint['epoch'] if args.random_last_layer: checkpoint["state_dict"][ "decoder.pred_conv.weight"] = torch.rand(( self.nclass, checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[1], checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[2], checkpoint["state_dict"] ["decoder.pred_conv.weight"].shape[3], )) checkpoint["state_dict"][ "decoder.pred_conv.bias"] = torch.rand(self.nclass) if args.cuda: self.model.module.load_state_dict(checkpoint["state_dict"]) else: self.model.load_state_dict(checkpoint["state_dict"]) # self.best_pred = checkpoint['best_pred'] print( f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})" ) # Clear start epoch if fine-tuning if args.ft: args.start_epoch = 0