示例#1
0
def get_trading_signals_figure(order_reader: OrderReader,
                               entity_id: str,
                               start_timestamp=None,
                               end_timestamp=None,
                               adjust_type=None):
    entity_type, _, _ = decode_entity_id(entity_id)

    data_schema = get_kdata_schema(entity_type=entity_type,
                                   level=order_reader.level,
                                   adjust_type=adjust_type)
    if not start_timestamp:
        start_timestamp = order_reader.start_timestamp
    if not end_timestamp:
        end_timestamp = order_reader.end_timestamp
    kdata_reader = DataReader(
        entity_ids=[entity_id],
        data_schema=data_schema,
        entity_schema=zvt_context.tradable_schema_map.get(entity_type),
        start_timestamp=start_timestamp,
        end_timestamp=end_timestamp,
        level=order_reader.level,
    )

    # generate the annotation df
    order_reader.move_on(timeout=0)
    df = order_reader.data_df.copy()
    df = df[df.entity_id == entity_id].copy()
    if pd_is_not_null(df):
        df["value"] = df["order_price"]
        df["flag"] = df["order_type"].apply(lambda x: order_type_flag(x))
        df["color"] = df["order_type"].apply(lambda x: order_type_color(x))
    print(df.tail())

    drawer = Drawer(main_df=kdata_reader.data_df, annotation_df=df)
    return drawer.draw_kline(show=False, height=800)
示例#2
0
文件: stats.py 项目: stungkit/zvt
def get_performance(
    entity_ids,
    start_timestamp=None,
    end_timestamp=None,
    adjust_type: Union[AdjustType, str] = None,
    data_provider=None,
):
    entity_type, _, _ = decode_entity_id(entity_ids[0])
    if not adjust_type:
        adjust_type = default_adjust_type(entity_type=entity_type)
    data_schema = get_kdata_schema(entity_type=entity_type,
                                   adjust_type=adjust_type)

    result, _ = get_top_entities(
        data_schema=data_schema,
        column="close",
        start_timestamp=start_timestamp,
        end_timestamp=end_timestamp,
        pct=1,
        method=WindowMethod.change,
        return_type=TopType.positive,
        kdata_filters=[data_schema.entity_id.in_(entity_ids)],
        data_provider=data_provider,
    )
    return result
示例#3
0
文件: em_api.py 项目: stungkit/zvt
def to_em_sec_id(entity_id):
    entity_type, exchange, code = decode_entity_id(entity_id)
    # 主力合约
    if entity_type == "future" and code[-1].isalpha():
        code = code + "m"
    if entity_type == "currency" and "CNYC" in code:
        return f"120.{code}"
    return f"{to_em_entity_flag(exchange)}.{code}"
示例#4
0
def get_performance(entity_ids, start_timestamp=None, end_timestamp=None, adjust_type: Union[AdjustType, str] = None):
    entity_type, _, _ = decode_entity_id(entity_ids[0])
    if not adjust_type and entity_type == 'stock':
        adjust_type = AdjustType.hfq
    data_schema = get_kdata_schema(entity_type=entity_type, adjust_type=adjust_type)

    result, _ = get_top_entities(data_schema=data_schema, column='close', start_timestamp=start_timestamp,
                                 end_timestamp=end_timestamp, pct=1, method='change', return_type='positive',
                                 filters=[data_schema.entity_id.in_(entity_ids)])
    return result
示例#5
0
文件: em_api.py 项目: stungkit/zvt
def to_em_fc(entity_id):
    entity_type, exchange, code = decode_entity_id(entity_id)
    if entity_type == "stock":
        if exchange == "sh":
            return f"{code}01"
        if exchange == "sz":
            return f"{code}02"

    if entity_type == "stockhk":
        return code

    if entity_type == "stockus":
        if exchange == "nyse":
            return f"{code}.N"
        if exchange == "nasdaq":
            return f"{code}.O"
示例#6
0
文件: intent.py 项目: durgagokina/zvt
def composite_all(data_schema, column, timestamp, entity_ids=None, filters=None):
    if type(column) is not str:
        column = column.name
    if filters:
        filters.append([data_schema.timestamp == to_pd_timestamp(timestamp)])
    else:
        filters = [data_schema.timestamp == to_pd_timestamp(timestamp)]
    df = data_schema.query_data(entity_ids=entity_ids, columns=['entity_id', 'timestamp', column], filters=filters,
                                index='entity_id')
    entity_type, exchange, _ = decode_entity_id(df['entity_id'].iloc[0])
    pie_df = pd.DataFrame(columns=df.index, data=[df[column].tolist()])
    pie_df['entity_id'] = f'{entity_type}_{exchange}_{column}'
    pie_df['timestamp'] = timestamp

    drawer = Drawer(main_df=pie_df)
    drawer.draw_pie(show=True)
示例#7
0
def to_em_fc(entity_id):
    entity_type, exchange, code = decode_entity_id(entity_id)
    if entity_type == 'stock':
        if exchange == 'sh':
            return f'{code}01'
        if exchange == 'sz':
            return f'{code}02'

    if entity_type == 'stockhk':
        return code

    if entity_type == 'stockus':
        if exchange == 'nyse':
            return f'{code}.N'
        if exchange == 'nasdaq':
            return f'{code}.O'
示例#8
0
文件: account.py 项目: zvtvz/zvt
    def on_trading_signal(self, trading_signal: TradingSignal):
        entity_id = trading_signal.entity_id
        happen_timestamp = trading_signal.happen_timestamp
        order_type = AccountService.trading_signal_to_order_type(
            trading_signal.trading_signal_type)
        trading_level = trading_signal.trading_level.value
        if order_type:
            try:
                kdata = get_kdata(
                    provider=self.provider,
                    entity_id=entity_id,
                    level=trading_level,
                    start_timestamp=happen_timestamp,
                    end_timestamp=happen_timestamp,
                    limit=1,
                    adjust_type=self.adjust_type,
                )
            except Exception as e:
                self.logger.error(e)
                raise WrongKdataError("could not get kdata")

            if pd_is_not_null(kdata):
                entity_type, _, _ = decode_entity_id(kdata["entity_id"][0])

                the_price = kdata["close"][0]

                if the_price:
                    self.order(
                        entity_id=entity_id,
                        current_price=the_price,
                        current_timestamp=happen_timestamp,
                        order_pct=trading_signal.position_pct,
                        order_money=trading_signal.order_money,
                        order_type=order_type,
                    )
                else:
                    self.logger.warning(
                        "ignore trading signal,wrong kdata,entity_id:{},timestamp:{},kdata:{}"
                        .format(entity_id, happen_timestamp,
                                kdata.to_dict(orient="records")))

            else:
                self.logger.warning(
                    "ignore trading signal,could not get kdata,entity_id:{},timestamp:{}"
                    .format(entity_id, happen_timestamp))
示例#9
0
def get_kdata(region: Region, entity_id=None, entity_ids=None, level=IntervalLevel.LEVEL_1DAY.value, 
              provider: Provider=Provider.Default, columns=None,
              return_type='df', start_timestamp=None, end_timestamp=None,
              filters=None, session=None, order=None, limit=None, index='timestamp', 
              adjust_type: AdjustType = None):
    assert not entity_id or not entity_ids
    if entity_ids:
        entity_id = entity_ids[0]
    else:
        entity_ids = [entity_id]

    entity_type, _, _ = decode_entity_id(entity_id)
    data_schema: Mixin = get_kdata_schema(entity_type, level=level, adjust_type=adjust_type)

    return data_schema.query_data(region=region, entity_ids=entity_ids, level=level, provider=provider,
                                  columns=columns, return_type=return_type, 
                                  start_timestamp=start_timestamp, end_timestamp=end_timestamp, 
                                  filters=filters, session=session, order=order,
                                  limit=limit, index=index)
示例#10
0
文件: em_api.py 项目: stungkit/zvt
def get_basic_info(entity_id):
    entity_type, exchange, code = decode_entity_id(entity_id)
    if entity_type == "stock":
        url = "https://emh5.eastmoney.com/api/GongSiGaiKuang/GetJiBenZiLiao"
        result_field = "JiBenZiLiao"
    elif entity_type == "stockus":
        url = "https://emh5.eastmoney.com/api/MeiGu/GaiKuang/GetZhengQuanZiLiao"
        result_field = "ZhengQuanZiLiao"
    elif entity_type == "stockhk":
        url = "https://emh5.eastmoney.com/api/GangGu/GaiKuang/GetZhengQuanZiLiao"
        result_field = "ZhengQuanZiLiao"
    else:
        assert False

    data = {"fc": to_em_fc(entity_id=entity_id), "color": "w"}
    resp = requests.post(url=url, json=data, headers=DEFAULT_HEADER)

    resp.raise_for_status()

    return resp.json()["Result"][result_field]
示例#11
0
文件: em_api.py 项目: stungkit/zvt
def get_kdata(entity_id, level=IntervalLevel.LEVEL_1DAY, adjust_type=AdjustType.qfq, limit=10000):
    entity_type, exchange, code = decode_entity_id(entity_id)
    level = IntervalLevel(level)

    sec_id = to_em_sec_id(entity_id)
    fq_flag = to_em_fq_flag(adjust_type)
    level_flag = to_em_level_flag(level)
    # f131 结算价
    # f133 持仓
    # 目前未获取
    url = f"https://push2his.eastmoney.com/api/qt/stock/kline/get?secid={sec_id}&klt={level_flag}&fqt={fq_flag}&lmt={limit}&end=20500000&iscca=1&fields1=f1,f2,f3,f4,f5,f6,f7,f8&fields2=f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f62,f63,f64&ut=f057cbcbce2a86e2866ab8877db1d059&forcect=1"

    resp = requests.get(url, headers=DEFAULT_HEADER)
    resp.raise_for_status()
    results = resp.json()
    data = results["data"]

    kdatas = []

    if data:
        klines = data["klines"]
        name = data["name"]

        for result in klines:
            # "2000-01-28,1005.26,1012.56,1173.12,982.13,3023326,3075552000.00"
            # "2021-08-27,19.39,20.30,20.30,19.25,1688497,3370240912.00,5.48,6.01,1.15,3.98,0,0,0"
            # time,open,close,high,low,volume,turnover
            # "2022-04-13,10708,10664,10790,10638,402712,43124771328,1.43,0.57,60,0.00,4667112399583576064,4690067230254170112,1169270784"
            fields = result.split(",")
            the_timestamp = to_pd_timestamp(fields[0])

            the_id = generate_kdata_id(entity_id=entity_id, timestamp=the_timestamp, level=level)

            open = to_float(fields[1])
            close = to_float(fields[2])
            high = to_float(fields[3])
            low = to_float(fields[4])
            volume = to_float(fields[5])
            turnover = to_float(fields[6])
            # 7 振幅
            change_pct = value_to_pct(to_float(fields[8]))
            # 9 变动
            turnover_rate = value_to_pct(to_float(fields[10]))

            kdatas.append(
                dict(
                    id=the_id,
                    timestamp=the_timestamp,
                    entity_id=entity_id,
                    provider="em",
                    code=code,
                    name=name,
                    level=level.value,
                    open=open,
                    close=close,
                    high=high,
                    low=low,
                    volume=volume,
                    turnover=turnover,
                    turnover_rate=turnover_rate,
                    change_pct=change_pct,
                )
            )
    if kdatas:
        df = pd.DataFrame.from_records(kdatas)
        return df
示例#12
0
def get_kdata(entity_id,
              level=IntervalLevel.LEVEL_1DAY,
              adjust_type=AdjustType.qfq,
              limit=10000):
    entity_type, exchange, code = decode_entity_id(entity_id)
    level = IntervalLevel(level)

    sec_id = to_em_sec_id(entity_id)
    fq_flag = to_em_fq_flag(adjust_type)
    level_flag = to_em_level_flag(level)
    url = f'https://push2his.eastmoney.com/api/qt/stock/kline/get?secid={sec_id}&klt={level_flag}&fqt={fq_flag}&lmt={limit}&end=20500000&iscca=1&fields1=f1,f2,f3,f4,f5,f6,f7,f8&fields2=f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f62,f63,f64&ut=f057cbcbce2a86e2866ab8877db1d059&forcect=1'

    resp = requests.get(url, headers=DEFAULT_HEADER)
    resp.raise_for_status()
    results = resp.json()
    data = results['data']

    kdatas = []

    if data:
        klines = data['klines']
        name = data['name']

        # TODO: ignore the last unfinished kdata now,could control it better if need
        for result in klines[:-1]:
            # "2000-01-28,1005.26,1012.56,1173.12,982.13,3023326,3075552000.00"
            # "2021-08-27,19.39,20.30,20.30,19.25,1688497,3370240912.00,5.48,6.01,1.15,3.98,0,0,0"
            # time,open,close,high,low,volume,turnover
            fields = result.split(',')
            the_timestamp = to_pd_timestamp(fields[0])

            the_id = generate_kdata_id(entity_id=entity_id,
                                       timestamp=the_timestamp,
                                       level=level)

            open = to_float(fields[1])
            close = to_float(fields[2])
            high = to_float(fields[3])
            low = to_float(fields[4])
            volume = to_float(fields[5])
            turnover = to_float(fields[6])
            # 7 振幅
            change_pct = value_to_pct(to_float(fields[8]))
            # 9 变动
            turnover_rate = value_to_pct(to_float(fields[10]))

            kdatas.append(
                dict(id=the_id,
                     timestamp=the_timestamp,
                     entity_id=entity_id,
                     provider='em',
                     code=code,
                     name=name,
                     level=level.value,
                     open=open,
                     close=close,
                     high=high,
                     low=low,
                     volume=volume,
                     turnover=turnover,
                     turnover_rate=turnover_rate,
                     change_pct=change_pct))
    if kdatas:
        df = pd.DataFrame.from_records(kdatas)
        return df
示例#13
0
文件: account.py 项目: zvtvz/zvt
    def on_trading_close(self, timestamp):
        self.logger.info("on_trading_close:{}".format(timestamp))
        # remove the empty position
        self.account.positions = [
            position for position in self.account.positions
            if position.long_amount > 0 or position.short_amount > 0
        ]

        # clear the data which need recomputing
        the_id = "{}_{}".format(self.trader_name,
                                to_time_str(timestamp, TIME_FORMAT_ISO8601))

        self.account.value = 0
        self.account.all_value = 0
        for position in self.account.positions:
            entity_type, _, _ = decode_entity_id(position.entity_id)
            data_schema = get_kdata_schema(entity_type,
                                           level=IntervalLevel.LEVEL_1DAY,
                                           adjust_type=self.adjust_type)

            kdata = get_kdata(
                provider=self.provider,
                level=IntervalLevel.LEVEL_1DAY,
                entity_id=position.entity_id,
                order=data_schema.timestamp.desc(),
                end_timestamp=timestamp,
                limit=1,
                adjust_type=self.adjust_type,
            )

            closing_price = kdata["close"][0]

            position.available_long = position.long_amount
            position.available_short = position.short_amount

            if closing_price:
                if (position.long_amount
                        is not None) and position.long_amount > 0:
                    position.value = position.long_amount * closing_price
                    self.account.value += position.value
                elif (position.short_amount
                      is not None) and position.short_amount > 0:
                    position.value = 2 * (position.short_amount *
                                          position.average_short_price)
                    position.value -= position.short_amount * closing_price
                    self.account.value += position.value

                # refresh profit
                position.profit = (closing_price - position.average_long_price
                                   ) * position.long_amount
                position.profit_rate = position.profit / (
                    position.average_long_price * position.long_amount)

            else:
                self.logger.warning(
                    "could not refresh close value for position:{},timestamp:{}"
                    .format(position.entity_id, timestamp))

            position.id = "{}_{}_{}".format(
                self.trader_name, position.entity_id,
                to_time_str(timestamp, TIME_FORMAT_ISO8601))
            position.timestamp = to_pd_timestamp(timestamp)
            position.account_stats_id = the_id

        self.account.id = the_id
        self.account.all_value = self.account.value + self.account.cash
        self.account.closing = True
        self.account.timestamp = to_pd_timestamp(timestamp)
        self.account.profit = (
            self.account.all_value -
            self.account.input_money) / self.account.input_money

        self.session.add(self.account)
        self.session.commit()
        account_info = (
            f"on_trading_close,holding size:{len(self.account.positions)} profit:{self.account.profit} input_money:{self.account.input_money} "
            f"cash:{self.account.cash} value:{self.account.value} all_value:{self.account.all_value}"
        )
        self.logger.info(account_info)
示例#14
0
def to_em_sec_id(entity_id):
    entity_type, exchange, code = decode_entity_id(entity_id)
    return f'{to_em_entity_flag(exchange)}.{code}'
示例#15
0
    def draw(self,
             main_chart='kline',
             sub_chart='bar',
             mode='lines',
             width=None,
             height=None,
             title=None,
             keep_ui_state=True,
             show=False,
             **kwargs):
        if pd_is_not_null(self.sub_data):
            subplot = True
            fig = make_subplots(rows=2, cols=1, row_heights=[0.8, 0.2], vertical_spacing=0.08, shared_xaxes=True)
            sub_traces = []
        else:
            subplot = False
            fig = go.Figure()

        traces = []

        for entity_id, df in self.main_data.entity_map_df.items():
            code = entity_id
            try:
                _, _, code = decode_entity_id(entity_id)
            except Exception:
                pass

            if main_chart == 'kline':
                trace_name = '{}_kdata'.format(code)
                trace = go.Candlestick(x=df.index, open=df['open'], close=df['close'], low=df['low'], high=df['high'],
                                       name=trace_name, **kwargs)
                traces.append(trace)
            elif main_chart == 'scatter':
                for col in df.columns:
                    trace_name = '{}_{}'.format(code, col)
                    ydata = df[col].values.tolist()
                    traces.append(go.Scatter(x=df.index, y=ydata, mode=mode, name=trace_name, **kwargs))

            # 绘制指标
            factor_df = self.factor_data.entity_map_df.get(entity_id)
            if pd_is_not_null(factor_df):
                for col in factor_df.columns:
                    trace_name = '{}_{}'.format(code, col)
                    ydata = factor_df[col].values.tolist()

                    line = go.Scatter(x=df.index, y=ydata, mode=mode, name=trace_name, **kwargs)
                    traces.append(line)

            if subplot:
                # 绘制幅图
                sub_df = self.sub_data.entity_map_df.get(entity_id)
                if pd_is_not_null(sub_df):
                    for col in sub_df.columns:
                        trace_name = '{}_{}'.format(code, col)
                        ydata = sub_df[col].values.tolist()

                        def color(i):
                            if i > 0:
                                return 'red'
                            else:
                                return 'green'

                        colors = [color(i) for i in ydata]

                        if sub_chart == 'line':
                            sub_trace = go.Scatter(x=sub_df.index, y=ydata, name=trace_name, yaxis='y2',
                                                   marker_color=colors)
                        else:
                            sub_trace = go.Bar(x=sub_df.index, y=ydata, name=trace_name, yaxis='y2',
                                               marker_color=colors)
                        sub_traces.append(sub_trace)

        if subplot:
            fig.add_traces(traces, rows=[1] * len(traces), cols=[1] * len(traces))
            fig.add_traces(sub_traces, rows=[2] * len(sub_traces), cols=[1] * len(sub_traces))
        else:
            fig.add_traces(traces)

        fig.update_layout(self.gen_plotly_layout(width=width, height=height, title=title, keep_ui_state=keep_ui_state,
                                                 subplot=subplot))

        if show:
            fig.show()
        else:
            return fig
示例#16
0
文件: drawer.py 项目: stungkit/zvt
    def make_traces(self,
                    main_chart=ChartType.kline,
                    sub_chart="bar",
                    yaxis="y",
                    scale_value=None,
                    **kwargs):
        traces = []
        sub_traces = []

        for entity_id, df in self.main_data.entity_map_df.items():
            df = df.select_dtypes(np.number)
            df = df.copy()
            if scale_value:
                for col in df.columns:
                    first = None
                    for i in range(0, len(df)):
                        first = df[col][i]
                        if first != 0:
                            break
                    if first == 0:
                        continue
                    scale = scale_value / first
                    df[col] = df[col] * scale
            code = entity_id
            try:
                _, _, code = decode_entity_id(entity_id)
            except Exception:
                pass

            # 构造主图
            if main_chart == ChartType.bar:
                for col in df.columns:
                    trace_name = "{}_{}".format(code, col)
                    ydata = df[col].values.tolist()
                    traces.append(
                        go.Bar(x=df.index,
                               y=ydata,
                               name=trace_name,
                               yaxis=yaxis,
                               **kwargs))
            elif main_chart == ChartType.kline:
                trace_name = "{}_kdata".format(code)
                trace = go.Candlestick(
                    x=df.index,
                    open=df["open"],
                    close=df["close"],
                    low=df["low"],
                    high=df["high"],
                    name=trace_name,
                    yaxis=yaxis,
                    **kwargs,
                )
                traces.append(trace)
            elif main_chart in [
                    ChartType.scatter, ChartType.line, ChartType.area
            ]:
                mode = _zvt_chart_type_map_scatter_mode.get(main_chart)
                for col in df.columns:
                    trace_name = "{}_{}".format(code, col)
                    ydata = df[col].values.tolist()
                    traces.append(
                        go.Scatter(x=df.index,
                                   y=ydata,
                                   mode=mode,
                                   name=trace_name,
                                   yaxis=yaxis,
                                   **kwargs))
            elif main_chart == ChartType.histogram:
                for col in df.columns:
                    trace_name = "{}_{}".format(code, col)
                    x = df[col].tolist()
                    trace = go.Histogram(x=x, name=trace_name, **kwargs)
                    traces.append(trace)
                    annotation = [
                        dict(
                            entity_id=entity_id,
                            timestamp=x[-1],
                            value=0,
                            flag=f"{trace_name}:{x[-1]}",
                        )
                    ]
                    annotation_df = pd.DataFrame.from_records(
                        annotation, index=["entity_id", "timestamp"])
                    if pd_is_not_null(self.annotation_df):
                        self.annotation_df = pd.concat(
                            [self.annotation_df, annotation_df])
                    else:
                        self.annotation_df = annotation_df
            elif main_chart == ChartType.pie:
                for _, row in df.iterrows():
                    traces.append(
                        go.Pie(name=entity_id,
                               labels=df.columns.tolist(),
                               values=row.tolist(),
                               **kwargs))
            else:
                assert False

            # 构造主图指标
            if self.factor_data_list:
                for factor_data in self.factor_data_list:
                    if not factor_data.empty():
                        factor_df = factor_data.entity_map_df.get(entity_id)
                        factor_df = factor_df.select_dtypes(np.number)
                        if pd_is_not_null(factor_df):
                            for col in factor_df.columns:
                                trace_name = "{}_{}".format(code, col)
                                ydata = factor_df[col].values.tolist()

                                line = go.Scatter(x=factor_df.index,
                                                  y=ydata,
                                                  mode="lines",
                                                  name=trace_name,
                                                  yaxis=yaxis,
                                                  **kwargs)
                                traces.append(line)

            # 构造幅图
            if self.has_sub_plot():
                for sub_data in self.sub_data_list:
                    sub_df = sub_data.entity_map_df.get(entity_id)
                    if pd_is_not_null(sub_df):
                        sub_df = sub_df.select_dtypes(np.number)
                        for col in sub_df.columns:
                            trace_name = "{}_{}".format(code, col)
                            ydata = sub_df[col].values.tolist()

                            def color(i):
                                if i > 0:
                                    return "red"
                                else:
                                    return "green"

                            colors = [color(i) for i in ydata]

                            the_sub_chart = None
                            if self.sub_col_chart is not None:
                                the_sub_chart = self.sub_col_chart.get(col)
                            if not the_sub_chart:
                                the_sub_chart = sub_chart

                            if the_sub_chart == ChartType.line:
                                sub_trace = go.Scatter(
                                    x=sub_df.index,
                                    y=ydata,
                                    name=trace_name,
                                    yaxis="y2",
                                    marker=dict(color=colors))
                            else:
                                sub_trace = go.Bar(x=sub_df.index,
                                                   y=ydata,
                                                   name=trace_name,
                                                   yaxis="y2",
                                                   marker=dict(color=colors))
                            sub_traces.append(sub_trace)

        return traces, sub_traces
示例#17
0
文件: report_utils.py 项目: zvtvz/zvt
def report_top_stats(
    entity_provider,
    data_provider,
    periods=[7, 30, 180, 365],
    ignore_new_stock=True,
    entity_type="stock",
    adjust_type=None,
    top_count=30,
    turnover_threshold=100000000,
    turnover_rate_threshold=0.02,
    em_group_over_write=True,
):
    if not adjust_type:
        adjust_type = default_adjust_type(entity_type=entity_type)
    kdata_schema = get_kdata_schema(entity_type=entity_type,
                                    adjust_type=adjust_type)
    entity_schema = get_entity_schema(entity_type=entity_type)
    latest_day = kdata_schema.query_data(provider=data_provider,
                                         order=kdata_schema.timestamp.desc(),
                                         limit=1,
                                         return_type="domain")
    current_timestamp = latest_day[0].timestamp
    email_action = EmailInformer()

    # 至少上市一年
    filter_entity_ids = []
    if ignore_new_stock:
        pre_year = next_date(current_timestamp, -365)

        entity_ids = get_entity_ids(
            provider=entity_provider,
            entity_schema=entity_schema,
            filters=[entity_schema.timestamp <= pre_year])

        if not entity_ids:
            msg = f"{entity_type} no entity_ids listed one year"
            logger.error(msg)
            email_action.send_message(zvt_config["email_username"],
                                      "report_top_stats error", msg)
            return
        filter_entity_ids = entity_ids

    filter_turnover_df = kdata_schema.query_data(
        filters=[
            kdata_schema.turnover >= turnover_threshold,
            kdata_schema.turnover_rate >= turnover_rate_threshold,
        ],
        provider=data_provider,
        start_timestamp=current_timestamp,
        index="entity_id",
        columns=["entity_id", "code"],
    )
    if filter_entity_ids:
        filter_entity_ids = set(filter_entity_ids) & set(
            filter_turnover_df.index.tolist())
    else:
        filter_entity_ids = filter_turnover_df.index.tolist()

    if not filter_entity_ids:
        msg = f"{entity_type} no entity_ids selected"
        logger.error(msg)
        email_action.send_message(zvt_config["email_username"],
                                  "report_top_stats error", msg)
        return

    logger.info(
        f"{entity_type} filter_entity_ids size: {len(filter_entity_ids)}")
    filters = [kdata_schema.entity_id.in_(filter_entity_ids)]

    stats = []
    ups = []
    downs = []

    for period in periods:
        start = next_date(current_timestamp, -period)
        df, _ = get_top_performance_entities(
            entity_type=entity_type,
            start_timestamp=start,
            filters=filters,
            pct=1,
            show_name=True,
            entity_provider=entity_provider,
            data_provider=data_provider,
        )
        df.rename(columns={"score": f"score_{period}"}, inplace=True)
        ups.append(tabulate(df.iloc[:top_count], headers="keys"))
        downs.append(tabulate(df.iloc[-top_count:], headers="keys"))

        stats.append(tabulate(df.describe(), headers="keys"))

        # 最近一个月和一周最靓仔的
        if period == 7 or period == 30:
            try:
                codes = [
                    decode_entity_id(entity_id)[2]
                    for entity_id in df.index[:top_count]
                ]
                add_to_eastmoney(codes=codes,
                                 entity_type=entity_type,
                                 group="最靓仔",
                                 over_write=em_group_over_write)
            except Exception as e:
                logger.exception(e)
                email_action.send_message(
                    zvt_config["email_username"], f"report_top_stats error",
                    "report_top_stats error:{}".format(e))

        # 一年内跌幅最大的
        if period == 365:
            try:
                codes = [
                    decode_entity_id(entity_id)[2]
                    for entity_id in df.index[-top_count:]
                ]
                add_to_eastmoney(codes=codes,
                                 entity_type=entity_type,
                                 group="谁有我惨",
                                 over_write=em_group_over_write)
            except Exception as e:
                logger.exception(e)
                email_action.send_message(
                    zvt_config["email_username"], f"report_top_stats error",
                    "report_top_stats error:{}".format(e))

    msg = "\n"
    for s in stats:
        msg = msg + s + "\n"
    email_action.send_message(zvt_config["email_username"],
                              f"{current_timestamp} {entity_type}统计报告", msg)

    msg = "\n"
    for up in ups:
        msg = msg + up + "\n"
    email_action.send_message(zvt_config["email_username"],
                              f"{current_timestamp} {entity_type}涨幅统计报告", msg)

    msg = "\n"
    for down in downs:
        msg = msg + down + "\n"

    email_action.send_message(zvt_config["email_username"],
                              f"{current_timestamp} {entity_type}跌幅统计报告", msg)