def test_model_forward(): np.random.seed(6) x = np.random.randn(5, 4) w1 = np.random.randn(4, 5) b1 = np.random.randn(4, 1) w2 = np.random.randn(3, 4) b2 = np.random.randn(3, 1) w3 = np.random.randn(1, 3) b3 = np.random.randn(1, 1) nn = NeuralNetwork(w=[w1, w2, w3], b=[b1, b2, b3], params_ok=True) al = nn.model_forward(x) nt.eq_(len(nn.cache), 3) assert_eq(al, [[0.03921668, 0.70498921, 0.19734387, 0.04728177]])
def test_forward_propagation_dropout(): np.random.seed(1) x = np.random.randn(3, 5) w1 = np.random.randn(2, 3) b1 = np.random.randn(2, 1) w2 = np.random.randn(3, 2) b2 = np.random.randn(3, 1) w3 = np.random.randn(1, 3) b3 = np.random.randn(1, 1) np.random.seed(1) nn = NeuralNetwork(w=[w1, w2, w3], b=[b1, b2, b3], params_ok=True) a3 = nn.model_forward(x, keep_prop=0.7) assert_eq(a3, [[0.36974721, 0.00305176, 0.04565099, 0.49683389, 0.36974721]], rtol=1e-5)