Beispiel #1
0
def main():

    fileW = FromFinessFileMLR.createAnOutputFile()
    model = mlr.MLR()

    #Number of descriptor should be 396 and number of population should be 50 or more

    numOfPop = 50
    numOfFea = 396
    unfit = 1000

    # Final model requirements

    R2req_train = .6
    R2req_validate = .5
    R2req_test = .5

    TrainX, TrainY, ValidateX, ValidateY, TestX, TestY = FromDataFileMLR.getAllOfTheData(
    )
    TrainX, ValidateX, TestX = FromDataFileMLR.rescaleTheData(
        TrainX, ValidateX, TestX)

    unfit = 1000
    fittingStatus = unfit
    """Create a population based on the number of features selected, in this case 10, from the pool of features"""

    population = DifferentialEvolution.Create_A_Population(numOfPop, numOfFea)
    fittingStatus, fitness = FromFinessFileMLR.validate_model(model,fileW, population, \
        TrainX, TrainY, ValidateX, ValidateY, TestX, TestY)
Beispiel #2
0
import time  # provides timing for benchmarks
from numpy import *  # provides complex math and array functions
from sklearn import svm  # provides Support Vector Regression
import csv
import math
import sys

# Local files created by me
import mlr
import FromDataFileMLR
import FromFinessFileMLR
import BPSO
"""Create the output file"""

fileW = FromFinessFileMLR.createAnOutputFile()
#fileW = 0
model = mlr.MLR()
start = time.time()
#Number of descriptor should be 396 and number of population should be 50 or more
"""Number of population"""
numOfPop = 50
"""Number of total features"""
numOfFea = 396

# Final model requirements

R2req_train = .6
R2req_validate = .5
R2req_test = .5
alpha = 0.5