def main(): fileW = FromFinessFileMLR.createAnOutputFile() model = mlr.MLR() #Number of descriptor should be 396 and number of population should be 50 or more numOfPop = 50 numOfFea = 396 unfit = 1000 # Final model requirements R2req_train = .6 R2req_validate = .5 R2req_test = .5 TrainX, TrainY, ValidateX, ValidateY, TestX, TestY = FromDataFileMLR.getAllOfTheData( ) TrainX, ValidateX, TestX = FromDataFileMLR.rescaleTheData( TrainX, ValidateX, TestX) unfit = 1000 fittingStatus = unfit """Create a population based on the number of features selected, in this case 10, from the pool of features""" population = DifferentialEvolution.Create_A_Population(numOfPop, numOfFea) fittingStatus, fitness = FromFinessFileMLR.validate_model(model,fileW, population, \ TrainX, TrainY, ValidateX, ValidateY, TestX, TestY)
import time # provides timing for benchmarks from numpy import * # provides complex math and array functions from sklearn import svm # provides Support Vector Regression import csv import math import sys # Local files created by me import mlr import FromDataFileMLR import FromFinessFileMLR import BPSO """Create the output file""" fileW = FromFinessFileMLR.createAnOutputFile() #fileW = 0 model = mlr.MLR() start = time.time() #Number of descriptor should be 396 and number of population should be 50 or more """Number of population""" numOfPop = 50 """Number of total features""" numOfFea = 396 # Final model requirements R2req_train = .6 R2req_validate = .5 R2req_test = .5 alpha = 0.5