def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description='Build and test models based on dim reductions and provided spectra'
    )
    subparsers = parser.add_subparsers(dest='subparser_name')

    parser.add_argument(
        '--metadata_path', type=str, default='.', metavar='PATH',
        help='Metadata path to work from, if not ''.'''
    )
    parser.add_argument(
        '--spectra_path', type=str, default='.', metavar='PATH',
        help='Spectra path to work from, if not ''.'''
    )
    parser.add_argument(
        '--method', type=str, default='ICA', metavar='METHOD',
        help='Dim reduction method to load data for'
    )
    parser.add_argument(
        '--n_jobs', type=int, default=1, metavar='N_JOBS',
        help='N_JOBS'
    )
    parser.add_argument(
        '--model', type=str, choices=['ET', 'RF', 'GP', 'KNN', 'SVR'], default='ET',
        help='Which model type to use: ET (Extra Trees), RF (Random Forest), GP (Gaussian Process), KNN, or SVR (Support Vector Regression)'
    )
    parser.add_argument(
        '--load_model', action='store_true',
        help='Whether or not to load the model from --model_path'
    )
    parser.add_argument(
        '--model_path', type=str, default='model.pkl', metavar='MODEL_PATH',
        help='COMPLETE path from which to load a model'
    )
    parser.add_argument(
        '--metadata_flags', type=str, default='', metavar='METADATA_FLAGS',
        help='Flags specifying observational metadata pre-processing, e.g. LUNAR_MAG which takes the '\
            'magnitude and linearizes it (ignoring that it is an area magnitude)'
    )
    parser.add_argument(
        '--compacted_path', type=str, default=None, metavar='COMPATED_PATH',
        help='Path to find compacted/arrayized data; setting this will cause --path, --pattern to be ignored'
    )

    parser_compare = subparsers.add_parser('compare')
    parser_compare.add_argument(
        '--folds', type=int, default=3, metavar='TEST_FOLDS',
        help='Do k-fold cross validation with specified number of folds.  Defaults to 3.'
    )
    parser_compare.add_argument(
        '--iters', type=int, default=50, metavar='HYPER_FIT_ITERS',
        help='Number of iterations when fitting hyper-params'
    )
    parser_compare.add_argument(
        '--outputfbk', action='store_true',
        help='If set, outputs \'grid_scores_\' data from RandomizedSearchCV'
    )
    parser_compare.add_argument(
        '--save_best', action='store_true',
        help='Whether or not to save the (last/best) model built for e.g. --hyper_fit'
    )
    parser_compare.add_argument(
        '--scorer', type=str, choices=['R2', 'MAE', 'MSE', 'LL', 'EXP_VAR', 'MAPED', 'MSEMV'], default='R2',
        help='Which scoring method to use to determine ranking of model instances.'
    )
    parser_compare.add_argument(
        '--use_spectra', action='store_true',
        help='Whether scoring is done against the DM components or the predicted spectra'
    )
    parser_compare.add_argument(
        '--ivar_cutoff', type=float, default=0.001, metavar='IVAR_CUTOFF',
        help='data with inverse variace below cutoff is masked as if ivar==0'
    )
    parser_compare.add_argument(
        '--plot_final_errors', action='store_true',
        help='If set, will plot the errors from the final/best model, for the whole dataset, from ' + \
            'the best model re-trained on CV folds used for testing.' + \
            'Plots all errors on top of each other with low-ish alpha, to give a kind of visual ' + \
            'density map of errors.'
    )

    args = parser.parse_args()

    obs_metadata = trim_observation_metadata(load_observation_metadata(args.metadata_path, flags=args.metadata_flags))
    sources, components, exposures, wavelengths = ICAize.deserialize_data(args.spectra_path, args.method)
    source_model, ss, model_args = ICAize.unpickle_model(args.spectra_path, args.method)

    comb_flux_arr, comb_exposure_arr, comb_wavelengths = None, None, None
    if args.use_spectra:
        comb_flux_arr, comb_exposure_arr, comb_ivar_arr, comb_masks, comb_wavelengths = ICAize.load_data(args)

        filter_arr = np.in1d(comb_exposure_arr, exposures)
        comb_flux_arr = comb_flux_arr[filter_arr]
        comb_exposure_arr = comb_exposure_arr[filter_arr]

        sorted_inds = np.argsort(comb_exposure_arr)
        comb_flux_arr = comb_flux_arr[sorted_inds]
        comb_exposure_arr = comb_exposure_arr[sorted_inds]

        del comb_ivar_arr
        del comb_masks

    reduced_obs_metadata = obs_metadata[np.in1d(obs_metadata['EXP_ID'], exposures)]
    reduced_obs_metadata.sort('EXP_ID')
    sorted_inds = np.argsort(exposures)

    reduced_obs_metadata.remove_column('EXP_ID')
    md_len = len(reduced_obs_metadata)
    var_count = len(reduced_obs_metadata.columns)
    X_arr = np.array(reduced_obs_metadata).view('f8').reshape((md_len,-1))
    Y_arr = sources[sorted_inds]

    if args.load_model:
        predictive_model = load_model(args.model_path)
    else:
        predictive_model = get_model(args.model)

    if args.subparser_name == 'compare':
        pdist = get_param_distribution_for_model(args.model, args.iters)

        scorer = None
        if args.scorer == 'R2':
            scorer = make_scorer(R2)
        elif args.scorer == 'MAE':
            if args.use_spectra:
                p_MAE_ = partial(MAE, Y_full=Y_arr, flux_arr=comb_flux_arr,
                            source_model=source_model, ss=ss,
                            source_model_args=model_args, method=args.method)
                scorer = make_scorer(p_MAE_, greater_is_better=False)
            else:
                scorer = make_scorer(MAE, greater_is_better=False)
        elif args.scorer == 'MSE':
            if args.use_spectra:
                p_MSE_ = partial(MSE, Y_full=Y_arr, flux_arr=comb_flux_arr,
                            source_model=source_model, ss=ss,
                            source_model_args=model_args, method=args.method)
                scorer = make_scorer(p_MSE_, greater_is_better=False)
            else:
                scorer = make_scorer(MSE, greater_is_better=False)
        elif args.scorer == 'MSEMV':
            if args.use_spectra:
                p_MSEMV_ = partial(MSEMV, Y_full=Y_arr, flux_arr=comb_flux_arr,
                            source_model=source_model, ss=ss,
                            source_model_args=model_args, method=args.method)
                scorer = make_scorer(p_MSEMV_, greater_is_better=False)
            else:
                scorer = make_scorer(MSEMV, greater_is_better=False)
        elif args.scorer == 'EXP_VAR':
            if args.use_spectra:
                p_EXP_VAR_ = partial(EXP_VAR, Y_full=Y_arr, flux_arr=comb_flux_arr,
                            source_model=source_model, ss=ss,
                            source_model_args=model_args, method=args.method)
                scorer = make_scorer(p_EXP_VAR_)
            else:
                scorer = make_scorer(EXP_VAR)
        elif args.scorer == 'MAPED':
            if args.use_spectra:
                p_MAPED_ = partial(MAPED, Y_full=Y_arr, flux_arr=comb_flux_arr,
                            source_model=source_model, ss=ss,
                            source_model_args=model_args, method=args.method)
                scorer = make_scorer(p_MAPED_, greater_is_better=False)
            else:
                scorer = make_scorer(MAPED, greater_is_better=False)
        elif args.scorer == 'LL':
            scorer = None

        folder = ShuffleSplit(exposures.shape[0], n_iter=args.folds, test_size=1.0/args.folds,
                            random_state=12345)

        if args.model == 'GP':
            predictive_model.random_start = args.folds
            rcv = GridSearchCV(predictive_model, param_grid=pdist,
                            error_score=0, cv=3, n_jobs=args.n_jobs,
                            scoring=scorer)
                            #random_state=RANDOM_STATE,
                            #n_iter=args.iters,
        else:
            rcv = RandomizedSearchCV(predictive_model, param_distributions=pdist,
                            n_iter=args.iters, cv=folder, n_jobs=args.n_jobs,
                            scoring=scorer)

        # This is going to fit X (metdata) to Y (DM'ed sources).  But there are
        # really two tests here:  how well hyperparams fit/predict the sources
        # and how well they fit/predict the actual source spectra.  Until I know
        # better, I 'm going to need to build a way to test both.
        rcv.fit(X_arr, Y_arr)

        print(rcv.best_score_)
        print(rcv.best_params_)
        print(rcv.best_estimator_)
        if args.outputfbk:
            print("=+"*10 + "=")
            for val in rcv.grid_scores_:
                print(val)
            print("=+"*10 + "=")

        if args.save_best:
            save_model(rcv.best_estimator_, args.model_path)

        if args.plot_final_errors:
            for train_inds, test_inds in folder:
                rcv.best_estimator_.fit(X_arr[train_inds], Y_arr[train_inds])
                predicted = rcv.best_estimator_.predict(X_arr[test_inds])
                back_trans_flux = ICAize.inverse_transform(predicted, source_model, ss, args.method, model_args)
                diffs = np.abs(comb_flux_arr[test_inds] - back_trans_flux)
                #Is there not 'trick' to getting matplotlib to do this without a loop?
                for i in range(diffs.shape[0]):
                    plt.plot(comb_wavelengths, diffs[i, :], 'b-', alpha=0.01)
            plt.show()
Beispiel #2
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description='Compute PCA/ICA/NMF/etc. components over set of stacked spectra, save those out, and pickle model'
    )
    subparsers = parser.add_subparsers(dest='subparser_name')

    parser.add_argument(
        '--pattern', type=str, default='stacked*exp??????.*', metavar='PATTERN',
        help='File pattern for stacked sky fibers.'
    )
    parser.add_argument(
        '--path', type=str, default='.', metavar='PATH',
        help='Path to work from, if not ''.'''
    )
    parser.add_argument(
        '--compacted_path', type=str, default=None, metavar='COMPATED_PATH',
        help='Path to find compacted/arrayized data; setting this will cause --path, --pattern to be ignored'
    )
    parser.add_argument(
        '--method', type=str, default=['ICA'], metavar='METHOD',
        choices=['ICA', 'PCA', 'SPCA', 'NMF', 'ISO', 'KPCA', 'FA', 'DL'], nargs='+',
        help='Which dim. reduction method to use'
    )
    parser.add_argument(
        '--scale', action='store_true',
        help='Should inputs be scaled?  Will mean subtract and value scale, but does not scale variace.'
    )
    parser.add_argument(
        '--ivar_cutoff', type=float, default=0.001, metavar='IVAR_CUTOFF',
        help='data with inverse variace below cutoff is masked as if ivar==0'
    )
    parser.add_argument(
        '--n_iter', type=int, default=1200, metavar='MAX_ITER',
        help='Maximum number of iterations to allow for convergence.  For SDSS data 1000 is a safe number of ICA, while SPCA requires larger values e.g. ~2000 to ~2500'
    )
    parser.add_argument(
        '--n_jobs', type=int, default=None, metavar='N_JOBS',
        help='N_JOBS'
    )

    parser_compare = subparsers.add_parser('compare')
    parser_compare.add_argument(
        '--max_components', type=int, default=50, metavar='COMP_MAX',
        help='Max number of components to use/test'
    )
    parser_compare.add_argument(
        '--min_components', type=int, default=0, metavar='COMP_MIN',
        help='Min number of compoenents to use/test'
    )
    parser_compare.add_argument(
        '--step_size', type=int, default=5, metavar='COMP_STEP',
        help='Step size from comp_min to comp_max'
    )
    parser_compare.add_argument(
        '--comparison', choices=['EXP_VAR', 'R2', 'MSE', 'MAE'], nargs='*', default=['EXP_VAR'],
        help='Comparison methods: Explained variance (score), R2 (score), mean sq. error (loss), MEDIAN absolute error (loss)'
    )
    parser_compare.add_argument(
        '--mle_if_avail', action='store_true',
        help='In additon to --comparison, include MLE if PCA or FA methods specified'
    )
    parser_compare.add_argument(
        '--plot_example_reconstruction', action='store_true',
        help='Pick a random spectrum, plot its actual and reconstructed versions'
    )

    parser_build = subparsers.add_parser('build')
    parser_build.add_argument(
        '--n_components', type=int, default=40, metavar='N_COMPONENTS',
        help='Number of ICA/PCA/etc. components'
    )
    parser_build.add_argument(
        '--n_neighbors', type=int, default=10, metavar='N_NEIGHBORS',
        help='Number of neighbots for e.g. IsoMap'
    )

    args = parser.parse_args()

    comb_flux_arr, comb_exposure_arr, comb_ivar_arr, comb_masks, comb_wavelengths = iz.load_data(args)

    if 'DL' in args.method:
        flux_arr = comb_flux_arr.astype(dtype=np.float64)
    else:
        flux_arr = comb_flux_arr
    scaled_flux_arr = None
    ss = None
    if args.scale:
        ss = skpp.StandardScaler(with_std=False)
        scaled_flux_arr = ss.fit_transform(flux_arr)
    else:
        scaled_flux_arr = flux_arr

    if args.subparser_name == 'compare':
        fig, ax1 = plt.subplots()
        ax2 = ax1.twinx()

        for method in args.method:
            model = iz.get_model(method, max_iter=args.n_iter, random_state=iz.random_state, n_jobs=args.n_jobs)
            scores = {}
            mles_and_covs = args.mle_if_avail and (method == 'FA' or method == 'PCA')

            n_components = np.arange(args.min_components, args.max_components+1, args.step_size)
            for n in n_components:
                print("Cross validating for n=" + str(n) + " on method " + method)

                model.n_components = n

                comparisons = iz.score_via_CV(args.comparison,
                                    flux_arr if method == 'NMF' else scaled_flux_arr,
                                    model, method, n_jobs=args.n_jobs, include_mle=mles_and_covs,
                                    modeler=_iter_modeler, scorer=_iter_scorer)
                for key, val in comparisons.items():
                    if key in scores:
                        scores[key].append(val)
                    else:
                        scores[key] = [val]

            if mles_and_covs:
                #ax2.axhline(cov_mcd_score(scaled_flux_arr, args.scale), color='violet', label='MCD Cov', linestyle='--')
                ax2.axhline(cov_lw_score(scaled_flux_arr, args.scale), color='orange', label='LW Cov', linestyle='--')

            for key, score_list in scores.items():
                if key != 'mle':
                    ax1.plot(n_components, score_list, label=method + ':' + key + ' scores')
                else:
                    ax2.plot(n_components, score_list, '-.', label=method + ' mle scores')

        ax1.set_xlabel('nb of components')
        ax1.set_ylabel('CV scores', figure=fig)

        ax1.legend(loc='lower left')
        ax2.legend(loc='lower right')

        plt.show()
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description='Compute PCA/ICA/NMF/etc. components over set of stacked spectra, save those out, and pickle model'
    )
    parser.add_argument(
        '--pattern', type=str, default='stacked*exp??????.*', metavar='PATTERN',
        help='File pattern for stacked sky fibers.'
    )
    parser.add_argument(
        '--path', type=str, default='.', metavar='PATH',
        help='Path to work from, if not ''.'''
    )
    parser.add_argument(
        '--compacted_path', type=str, default=None, metavar='COMPATED_PATH',
        help='Path to find compacted/arrayized data; setting this will cause --path, --pattern to be ignored'
    )
    parser.add_argument(
        '--n_components', type=int, default=40, metavar='N_COMPONENTS',
        help='Number of ICA/PCA/etc. components'
    )
    parser.add_argument(
        '--method', type=str, default='ICA', metavar='METHOD',
        choices=['ICA', 'PCA', 'SPCA', 'NMF', 'ISO', 'KPCA', 'FA', 'DL'],
        help='Which dim. reduction method to use'
    )
    parser.add_argument(
        '--scale', action='store_true',
        help='Should inputs variance be scaled?  Defaults to mean subtract and value scale, but w/out this does not scale variance.'
    )
    parser.add_argument(
        '--no_scale', action='store_true',
        help='Suppresses all scaling'
    )
    parser.add_argument(
        '--ivar_cutoff', type=float, default=0.001, metavar='IVAR_CUTOFF',
        help='data with inverse variace below cutoff is masked as if ivar==0'
    )
    parser.add_argument(
        '--n_iter', type=int, default=1200, metavar='MAX_ITER',
        help='Maximum number of iterations to allow for convergence.  For SDSS data 1000 is a safe number of ICA, while SPCA requires larger values e.g. ~2000 to ~2500'
    )
    parser.add_argument(
        '--n_jobs', type=int, default=None, metavar='N_JOBS',
        help='N_JOBS'
    )
    args = parser.parse_args()


    comb_flux_arr, comb_exposure_arr, comb_ivar_arr, comb_masks, comb_wavelengths = iz.load_data(args)
    model = iz.get_model(args.method, n=args.n_components, n_neighbors=None, max_iter=args.n_iter, random_state=iz.random_state, n_jobs=args.n_jobs)

    ss = None
    if args.no_scale:
        scaled_flux_arr = comb_flux_arr
    else:
        ss = skpp.StandardScaler(with_std=False)
        if args.scale:
            ss = skpp.StandardScaler(with_std=True)
            scaled_flux_arr = ss.fit_transform(comb_flux_arr)

    #Heavily copied from J. Vanderplas/astroML bayesian_blocks.py
    N = comb_wavelengths.size
    step = args.n_components * 4

    edges = np.concatenate([comb_wavelengths[:1:step],
                            0.5 * (comb_wavelengths[1::step] + comb_wavelengths[:-1:step]),
                            comb_wavelengths[-1::step]])
    block_length = comb_wavelengths[-1::step] - edges

    # arrays to store the best configuration
    nn_vec = np.ones(N/step) * step
    best = np.zeros(N, dtype=float)
    last = np.zeros(N, dtype=int)

    for R in range(N/step):
        print("R: " + str(R))

        width = block_length[:R + 1] - block_length[R + 1]
        count_vec = np.cumsum(nn_vec[:R + 1][::-1])[::-1]

        #width = nn_vec[:R + 1] - nn_vec[R + 1]
        #count_vec = np.cumsum(nn_vec[:R + 1][::-1])[::-1]

        #print(width)
        #print(count_vec)
        #raw_input("Pausing... ")

        fit_vec = map(lambda n: iz.score_via_CV(['LL'], scaled_flux_arr[:, :n], model, ss, args.method, folds=3, n_jobs=args.n_jobs), count_vec)
        fit_vec = [d["mle"] for d in fit_vec]

        #print(fit_vec)
        fit_vec[1:] += best[:R]
        #print(fit_vec)

        i_max = np.argmax(fit_vec)
        last[R] = i_max
        best[R] = fit_vec[i_max]

        #print(best)

    change_points =  np.zeros(N/step, dtype=int)
    i_cp = N/step
    ind = N/step
    while True:
        i_cp -= 1
        change_points[i_cp] = ind
        if ind == 0:
            break
        ind = last[ind - 1]
    change_points = change_points[i_cp:]

    print(edges[change_points])


    '''
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=
        'Compute PCA/ICA/NMF/etc. components over set of stacked spectra, save those out, and pickle model'
    )
    parser.add_argument('--pattern',
                        type=str,
                        default='stacked*exp??????.*',
                        metavar='PATTERN',
                        help='File pattern for stacked sky fibers.')
    parser.add_argument('--path',
                        type=str,
                        default='.',
                        metavar='PATH',
                        help='Path to work from, if not '
                        '.'
                        '')
    parser.add_argument(
        '--compacted_path',
        type=str,
        default=None,
        metavar='COMPATED_PATH',
        help=
        'Path to find compacted/arrayized data; setting this will cause --path, --pattern to be ignored'
    )
    parser.add_argument('--n_components',
                        type=int,
                        default=40,
                        metavar='N_COMPONENTS',
                        help='Number of ICA/PCA/etc. components')
    parser.add_argument(
        '--method',
        type=str,
        default='ICA',
        metavar='METHOD',
        choices=['ICA', 'PCA', 'SPCA', 'NMF', 'ISO', 'KPCA', 'FA', 'DL'],
        help='Which dim. reduction method to use')
    parser.add_argument(
        '--scale',
        action='store_true',
        help=
        'Should inputs variance be scaled?  Defaults to mean subtract and value scale, but w/out this does not scale variance.'
    )
    parser.add_argument('--no_scale',
                        action='store_true',
                        help='Suppresses all scaling')
    parser.add_argument(
        '--ivar_cutoff',
        type=float,
        default=0.001,
        metavar='IVAR_CUTOFF',
        help='data with inverse variace below cutoff is masked as if ivar==0')
    parser.add_argument(
        '--n_iter',
        type=int,
        default=1200,
        metavar='MAX_ITER',
        help=
        'Maximum number of iterations to allow for convergence.  For SDSS data 1000 is a safe number of ICA, while SPCA requires larger values e.g. ~2000 to ~2500'
    )
    parser.add_argument('--n_jobs',
                        type=int,
                        default=None,
                        metavar='N_JOBS',
                        help='N_JOBS')
    args = parser.parse_args()

    comb_flux_arr, comb_exposure_arr, comb_ivar_arr, comb_masks, comb_wavelengths = iz.load_data(
        args)
    model = iz.get_model(args.method,
                         n=args.n_components,
                         n_neighbors=None,
                         max_iter=args.n_iter,
                         random_state=iz.random_state,
                         n_jobs=args.n_jobs)

    ss = None
    if args.no_scale:
        scaled_flux_arr = comb_flux_arr
    else:
        ss = skpp.StandardScaler(with_std=False)
        if args.scale:
            ss = skpp.StandardScaler(with_std=True)
            scaled_flux_arr = ss.fit_transform(comb_flux_arr)

    #Heavily copied from J. Vanderplas/astroML bayesian_blocks.py
    N = comb_wavelengths.size
    step = args.n_components * 4

    edges = np.concatenate([
        comb_wavelengths[:1:step],
        0.5 * (comb_wavelengths[1::step] + comb_wavelengths[:-1:step]),
        comb_wavelengths[-1::step]
    ])
    block_length = comb_wavelengths[-1::step] - edges

    # arrays to store the best configuration
    nn_vec = np.ones(N / step) * step
    best = np.zeros(N, dtype=float)
    last = np.zeros(N, dtype=int)

    for R in range(N / step):
        print("R: " + str(R))

        width = block_length[:R + 1] - block_length[R + 1]
        count_vec = np.cumsum(nn_vec[:R + 1][::-1])[::-1]

        #width = nn_vec[:R + 1] - nn_vec[R + 1]
        #count_vec = np.cumsum(nn_vec[:R + 1][::-1])[::-1]

        #print(width)
        #print(count_vec)
        #raw_input("Pausing... ")

        fit_vec = map(
            lambda n: iz.score_via_CV(['LL'],
                                      scaled_flux_arr[:, :n],
                                      model,
                                      ss,
                                      args.method,
                                      folds=3,
                                      n_jobs=args.n_jobs), count_vec)
        fit_vec = [d["mle"] for d in fit_vec]

        #print(fit_vec)
        fit_vec[1:] += best[:R]
        #print(fit_vec)

        i_max = np.argmax(fit_vec)
        last[R] = i_max
        best[R] = fit_vec[i_max]

        #print(best)

    change_points = np.zeros(N / step, dtype=int)
    i_cp = N / step
    ind = N / step
    while True:
        i_cp -= 1
        change_points[i_cp] = ind
        if ind == 0:
            break
        ind = last[ind - 1]
    change_points = change_points[i_cp:]

    print(edges[change_points])
    '''
Beispiel #5
0
def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        description=
        'Build and test models based on dim reductions and provided spectra')
    subparsers = parser.add_subparsers(dest='subparser_name')

    parser.add_argument('--metadata_path',
                        type=str,
                        default='.',
                        metavar='PATH',
                        help='Metadata path to work from, if not '
                        '.'
                        '')
    parser.add_argument('--spectra_path',
                        type=str,
                        default='.',
                        metavar='PATH',
                        help='Spectra path to work from, if not '
                        '.'
                        '')
    parser.add_argument('--method',
                        type=str,
                        default='ICA',
                        metavar='METHOD',
                        help='Dim reduction method to load data for')
    parser.add_argument('--n_jobs',
                        type=int,
                        default=1,
                        metavar='N_JOBS',
                        help='N_JOBS')
    parser.add_argument(
        '--model',
        type=str,
        choices=['ET', 'RF', 'GP', 'KNN', 'SVR'],
        default='ET',
        help=
        'Which model type to use: ET (Extra Trees), RF (Random Forest), GP (Gaussian Process), KNN, or SVR (Support Vector Regression)'
    )
    parser.add_argument(
        '--load_model',
        action='store_true',
        help='Whether or not to load the model from --model_path')
    parser.add_argument('--model_path',
                        type=str,
                        default='model.pkl',
                        metavar='MODEL_PATH',
                        help='COMPLETE path from which to load a model')
    parser.add_argument(
        '--metadata_flags', type=str, default='', metavar='METADATA_FLAGS',
        help='Flags specifying observational metadata pre-processing, e.g. LUNAR_MAG which takes the '\
            'magnitude and linearizes it (ignoring that it is an area magnitude)'
    )
    parser.add_argument(
        '--compacted_path',
        type=str,
        default=None,
        metavar='COMPATED_PATH',
        help=
        'Path to find compacted/arrayized data; setting this will cause --path, --pattern to be ignored'
    )

    parser_compare = subparsers.add_parser('compare')
    parser_compare.add_argument(
        '--folds',
        type=int,
        default=3,
        metavar='TEST_FOLDS',
        help=
        'Do k-fold cross validation with specified number of folds.  Defaults to 3.'
    )
    parser_compare.add_argument(
        '--iters',
        type=int,
        default=50,
        metavar='HYPER_FIT_ITERS',
        help='Number of iterations when fitting hyper-params')
    parser_compare.add_argument(
        '--outputfbk',
        action='store_true',
        help='If set, outputs \'grid_scores_\' data from RandomizedSearchCV')
    parser_compare.add_argument(
        '--save_best',
        action='store_true',
        help=
        'Whether or not to save the (last/best) model built for e.g. --hyper_fit'
    )
    parser_compare.add_argument(
        '--scorer',
        type=str,
        choices=['R2', 'MAE', 'MSE', 'LL', 'EXP_VAR', 'MAPED', 'MSEMV'],
        default='R2',
        help=
        'Which scoring method to use to determine ranking of model instances.')
    parser_compare.add_argument(
        '--use_spectra',
        action='store_true',
        help=
        'Whether scoring is done against the DM components or the predicted spectra'
    )
    parser_compare.add_argument(
        '--ivar_cutoff',
        type=float,
        default=0.001,
        metavar='IVAR_CUTOFF',
        help='data with inverse variace below cutoff is masked as if ivar==0')
    parser_compare.add_argument(
        '--plot_final_errors', action='store_true',
        help='If set, will plot the errors from the final/best model, for the whole dataset, from ' + \
            'the best model re-trained on CV folds used for testing.' + \
            'Plots all errors on top of each other with low-ish alpha, to give a kind of visual ' + \
            'density map of errors.'
    )

    args = parser.parse_args()

    obs_metadata = trim_observation_metadata(
        load_observation_metadata(args.metadata_path,
                                  flags=args.metadata_flags))
    sources, components, exposures, wavelengths = ICAize.deserialize_data(
        args.spectra_path, args.method)
    source_model, ss, model_args = ICAize.unpickle_model(
        args.spectra_path, args.method)

    comb_flux_arr, comb_exposure_arr, comb_wavelengths = None, None, None
    if args.use_spectra:
        comb_flux_arr, comb_exposure_arr, comb_ivar_arr, comb_masks, comb_wavelengths = ICAize.load_data(
            args)

        filter_arr = np.in1d(comb_exposure_arr, exposures)
        comb_flux_arr = comb_flux_arr[filter_arr]
        comb_exposure_arr = comb_exposure_arr[filter_arr]

        sorted_inds = np.argsort(comb_exposure_arr)
        comb_flux_arr = comb_flux_arr[sorted_inds]
        comb_exposure_arr = comb_exposure_arr[sorted_inds]

        del comb_ivar_arr
        del comb_masks

    reduced_obs_metadata = obs_metadata[np.in1d(obs_metadata['EXP_ID'],
                                                exposures)]
    reduced_obs_metadata.sort('EXP_ID')
    sorted_inds = np.argsort(exposures)

    reduced_obs_metadata.remove_column('EXP_ID')
    md_len = len(reduced_obs_metadata)
    var_count = len(reduced_obs_metadata.columns)
    X_arr = np.array(reduced_obs_metadata).view('f8').reshape((md_len, -1))
    Y_arr = sources[sorted_inds]

    if args.load_model:
        predictive_model = load_model(args.model_path)
    else:
        predictive_model = get_model(args.model)

    if args.subparser_name == 'compare':
        pdist = get_param_distribution_for_model(args.model, args.iters)

        scorer = None
        if args.scorer == 'R2':
            scorer = make_scorer(R2)
        elif args.scorer == 'MAE':
            if args.use_spectra:
                p_MAE_ = partial(MAE,
                                 Y_full=Y_arr,
                                 flux_arr=comb_flux_arr,
                                 source_model=source_model,
                                 ss=ss,
                                 source_model_args=model_args,
                                 method=args.method)
                scorer = make_scorer(p_MAE_, greater_is_better=False)
            else:
                scorer = make_scorer(MAE, greater_is_better=False)
        elif args.scorer == 'MSE':
            if args.use_spectra:
                p_MSE_ = partial(MSE,
                                 Y_full=Y_arr,
                                 flux_arr=comb_flux_arr,
                                 source_model=source_model,
                                 ss=ss,
                                 source_model_args=model_args,
                                 method=args.method)
                scorer = make_scorer(p_MSE_, greater_is_better=False)
            else:
                scorer = make_scorer(MSE, greater_is_better=False)
        elif args.scorer == 'MSEMV':
            if args.use_spectra:
                p_MSEMV_ = partial(MSEMV,
                                   Y_full=Y_arr,
                                   flux_arr=comb_flux_arr,
                                   source_model=source_model,
                                   ss=ss,
                                   source_model_args=model_args,
                                   method=args.method)
                scorer = make_scorer(p_MSEMV_, greater_is_better=False)
            else:
                scorer = make_scorer(MSEMV, greater_is_better=False)
        elif args.scorer == 'EXP_VAR':
            if args.use_spectra:
                p_EXP_VAR_ = partial(EXP_VAR,
                                     Y_full=Y_arr,
                                     flux_arr=comb_flux_arr,
                                     source_model=source_model,
                                     ss=ss,
                                     source_model_args=model_args,
                                     method=args.method)
                scorer = make_scorer(p_EXP_VAR_)
            else:
                scorer = make_scorer(EXP_VAR)
        elif args.scorer == 'MAPED':
            if args.use_spectra:
                p_MAPED_ = partial(MAPED,
                                   Y_full=Y_arr,
                                   flux_arr=comb_flux_arr,
                                   source_model=source_model,
                                   ss=ss,
                                   source_model_args=model_args,
                                   method=args.method)
                scorer = make_scorer(p_MAPED_, greater_is_better=False)
            else:
                scorer = make_scorer(MAPED, greater_is_better=False)
        elif args.scorer == 'LL':
            scorer = None

        folder = ShuffleSplit(exposures.shape[0],
                              n_iter=args.folds,
                              test_size=1.0 / args.folds,
                              random_state=12345)

        if args.model == 'GP':
            predictive_model.random_start = args.folds
            rcv = GridSearchCV(predictive_model,
                               param_grid=pdist,
                               error_score=0,
                               cv=3,
                               n_jobs=args.n_jobs,
                               scoring=scorer)
            #random_state=RANDOM_STATE,
            #n_iter=args.iters,
        else:
            rcv = RandomizedSearchCV(predictive_model,
                                     param_distributions=pdist,
                                     n_iter=args.iters,
                                     cv=folder,
                                     n_jobs=args.n_jobs,
                                     scoring=scorer)

        # This is going to fit X (metdata) to Y (DM'ed sources).  But there are
        # really two tests here:  how well hyperparams fit/predict the sources
        # and how well they fit/predict the actual source spectra.  Until I know
        # better, I 'm going to need to build a way to test both.
        rcv.fit(X_arr, Y_arr)

        print(rcv.best_score_)
        print(rcv.best_params_)
        print(rcv.best_estimator_)
        if args.outputfbk:
            print("=+" * 10 + "=")
            for val in rcv.grid_scores_:
                print(val)
            print("=+" * 10 + "=")

        if args.save_best:
            save_model(rcv.best_estimator_, args.model_path)

        if args.plot_final_errors:
            for train_inds, test_inds in folder:
                rcv.best_estimator_.fit(X_arr[train_inds], Y_arr[train_inds])
                predicted = rcv.best_estimator_.predict(X_arr[test_inds])
                back_trans_flux = ICAize.inverse_transform(
                    predicted, source_model, ss, args.method, model_args)
                diffs = np.abs(comb_flux_arr[test_inds] - back_trans_flux)
                #Is there not 'trick' to getting matplotlib to do this without a loop?
                for i in range(diffs.shape[0]):
                    plt.plot(comb_wavelengths, diffs[i, :], 'b-', alpha=0.01)
            plt.show()