Beispiel #1
0
def _smoothBorder(arr, start, stop, smooth, value):
    """
    start, stop: [z,y,x]
    """
    # prepare coordinates
    shape = N.array(arr.shape)
    start = N.ceil(start).astype(N.int16)
    stop = N.ceil(stop).astype(N.int16)
    smooth_start = start - smooth
    smooth_stop = stop + smooth
    smooth_start = N.where(smooth_start < 0, 0, smooth_start)
    smooth_stop = N.where(smooth_stop > shape, shape, smooth_stop)
    #print smooth_start, smooth_stop

    import copy
    sliceTemplate = [slice(None, None, None)] * arr.ndim
    shapeTemplate = list(shape)
    for d in range(arr.ndim):
        smooth_shape = shapeTemplate[:d] + shapeTemplate[d + 1:]

        # make an array containing the edge value
        edges = N.empty([2] + smooth_shape, N.float32)
        # start side
        slc = copy.copy(sliceTemplate)
        slc[d] = slice(start[d], start[d] + 1, None)
        edges[0] = arr[slc].reshape(smooth_shape)
        # stop side
        slc = copy.copy(sliceTemplate)
        slc[d] = slice(stop[d] - 1, stop[d], None)
        edges[1] = arr[slc].reshape(smooth_shape)

        edges = (edges - value) / float(
            smooth + 1)  # this value can be array??

        # both side
        for s, side in enumerate([start, stop]):
            if s == 0:
                rs = range(smooth_start[d], start[d])
                rs.sort(reverse=True)
            elif s == 1:
                rs = range(stop[d], smooth_stop[d])
            # smoothing
            for f, i in enumerate(rs):
                slc = copy.copy(sliceTemplate)
                slc[d] = slice(i, i + 1, None)
                edgeArr = edges[s].reshape(arr[slc].shape)
                #arr[slc] += edgeArr * (smooth - f)
                arr[slc] = arr[slc] + edgeArr * (smooth - f)  # casting rule

    arr = N.ascontiguousarray(arr)
    return arr
Beispiel #2
0
def img2polar2D(img,
                center,
                final_radius=None,
                initial_radius=None,
                phase_width=360):
    """
    img: array
    center: coordinate y, x
    final_radius: ending radius
    initial_radius: starting radius
    phase_width: npixles / circle
    """
    if img.ndim > 2 or len(center) > 2:
        raise ValueError, 'this function only support 2D, you entered %i-dim array and %i-dim center coordinate' % (
            img.ndim, len(center))

    if initial_radius is None:
        initial_radius = 0

    if final_radius is None:
        rad0 = N.ceil(N.array(img.shape) - center)
        final_radius = min((min(rad0), min(N.ceil(center))))

    if phase_width is None:
        phase_width = N.sum(img.shape[-2:]) * 2

    theta, R = np.meshgrid(np.linspace(0, 2 * np.pi, phase_width),
                           np.arange(initial_radius, final_radius))

    Ycart, Xcart = polar2cart2D(R, theta, center)

    Ycart = N.where(Ycart >= img.shape[0], img.shape[0] - 1, Ycart)
    Xcart = N.where(Xcart >= img.shape[1], img.shape[1] - 1, Xcart)

    Ycart = Ycart.astype(int)
    Xcart = Xcart.astype(int)

    polar_img = img[Ycart, Xcart]
    polar_img = np.reshape(polar_img,
                           (final_radius - initial_radius, phase_width))

    return polar_img
Beispiel #3
0
def mask_gaussianND(arr, zyx, v, sigma=2., ret=None, rot=0, clipZero=True):
    ''' 
    subtract elliptical gaussian at y,x with peakVal v
    if ret, return arr, else, arr itself is edited
    '''
    import imgGeo
    zyx = N.asarray(zyx)
    ndim = arr.ndim
    shape = N.array(arr.shape)
    try:
        if len(sigma) != ndim:
            raise ValueError, 'len(sigma) must be the same as len(shape)'
        else:
            sigma = N.asarray(sigma)
    except TypeError:  #(TypeError, ValueError):
        sigma = N.asarray([sigma] * ndim)

    # prepare small window
    slc = imgGeo.nearbyRegion(shape, N.floor(zyx), sigma * 10)
    inds, LD = imgFit.rotateIndicesND(slc, dtype=N.float32, rot=rot)
    param = (
        0,
        v,
    ) + tuple(zyx) + tuple(sigma)
    sidx = 2 + ndim
    g = imgFit.yGaussianND(N.asarray(param), inds, sidx).astype(arr.dtype.type)
    roi = arr[slc]
    if clipZero:
        g = N.where(g > roi, roi, g)

    if ret:
        e = N.zeros_like(arr)
        e[slc] = g  # this may be faster than copy()
        return arr - e
    else:
        arr[slc] -= g
Beispiel #4
0
def Xcorr(a,
          b,
          highpassSigma=2.5,
          wiener=0.2,
          cutoffFreq=3,
          forceSecondPeak=None,
          acceptOrigin=True,
          maskSigmaFact=1.,
          removeY=None,
          removeX=None,
          ret=None,
          normalize=True,
          gFit=True,
          lap=None,
          win=11):
    """
    returns (y,x), image
    if ret is True, returns [v, yx, image]

    to get yx cordinate of the image,
    yx += N.divide(picture.shape, 2)

    a, b:            2D array
    highpassSigma:   sigma value used for highpass pre-filter
    wiener:          wiener value used for highpass pre-filter
    cutoffFreq:      kill lowest frequency component from 0 to this level
    forceSecondPeak: If input is n>0 (True is 1), pick up n-th peak
    acceptOrigin:    If None, result at origin is rejected, look for the next peak
    maskSigmaFact:   Modifier to remove previous peak to look for another peak
    removeYX:        Rremove given number of pixel high intensity lines of the Xcorr
                     Y: Vertical, X: Horizontal
    normalize:       intensity normalized
    gFit:            peak is fitted to 2D gaussian array, if None use center of mass
    win:             window for gFit

    if b is a + (y,x) then, answer is (-y,-x)
    """
    shapeA = N.asarray(a.shape)
    shapeB = N.asarray(b.shape)
    shapeM = N.max([shapeA, shapeB], axis=0)
    shapeM = N.where(shapeM % 2, shapeM + 1, shapeM)
    center = shapeM / 2.

    arrs = [a, b]
    arrsS = ['a', 'b']
    arrsF = []
    for i, arr in enumerate(arrs):
        if arr.dtype not in [N.float32, N.float64]:
            arr = N.asarray(arr, N.float32)
        # this convolution has to be done beforehand to remove 2 pixels at the edge
        if lap == 'nothing':
            pass
        elif lap:
            arr = arr_Laplace(arr, mask=2)
        else:
            arr = arr_sorbel(arr, mask=1)

        if N.sometrue(shapeA < shapeM):
            arr = paddingMed(arr, shapeM)

        if normalize:
            mi, ma, me, sd = U.mmms(arr)
            arr = (arr - me) / sd

        if i == 1:
            arr = F.shift(arr)
        af = F.rfft(arr)

        af = highPassF(af, highpassSigma, wiener, cutoffFreq)
        arrsF.append(af)

    # start cross correlation
    af, bf = arrsF
    bf = bf.conjugate()
    cf = af * bf

    # go back to space domain
    c = F.irfft(cf)
    #  c = _changeOrigin(cr)

    # removing lines
    if removeX:
        yi, xi = N.indices((removeX, shapeM[-1]))  #sx))
        yi += center[-2] - removeX / 2.  #sy/2 - removeX/2
        c[yi, xi] = 0
    if removeY:
        yi, xi = N.indices((shapeM[-2], removeY))  #sy, removeY))
        xi += center[-1] - removeY / 2.  #sx/2 - removeY/2
        c[yi, xi] = 0

    # find the first peak
    if gFit:
        v, yx, s = findMaxWithGFit(c, win=win)  #, window=win, gFit=gFit)
        if v == 0:
            v, yx, s = findMaxWithGFit(c, win=win +
                                       2)  #, window=win+2, gFit=gFit)
            if v == 0:
                v = U.findMax(c)[0]
        yx = N.add(yx, 0.5)
        #yx += 0.5
    else:
        vzyx = U.findMax(c)
        v = vzyx[0]
        yx = vzyx[-2:]
        s = 2.5

    yx -= center

    if N.alltrue(N.abs(yx) < 1.0) and not acceptOrigin:
        forceSecondPeak = True

    # forceSecondPeak:
    if not forceSecondPeak:
        forceSecondPeak = 0
    for i in range(int(forceSecondPeak)):
        print '%i peak was removed' % (i + 1)  #, sigma: %.2f' % (i+1, s)
        yx += center
        g = gaussianArr2D(c.shape, sigma=s / maskSigmaFact, peakVal=v, orig=yx)
        c = c - g
        #c = mask_gaussian(c, yx[0], yx[1], v, s)
        if gFit:
            v, yx, s = findMaxWithGFit(c, win=win)  #, window=win, gFit=gFit)
            if v == 0:
                v, yx, s = findMaxWithGFit(c, win=win +
                                           2)  #, window=win+2, gFit=gFit)
                if v == 0:
                    v = U.findMax(c)[0]
            yx -= (center - 0.5)
        else:
            vzyx = U.findMax(c)
            v = vzyx[0]

    if not gFit:
        yx = centerOfMass(c, vzyx[-2:]) - center
    if lap is not 'nothing':
        c = paddingValue(c, shapeM + 2)

    if ret == 2:
        return yx, af, bf.conjugate()
    elif ret:
        return v, yx, c
    else:
        return yx, c
Beispiel #5
0
def pointsCutOutND(arr,
                   posList,
                   windowSize=100,
                   sectWise=None,
                   interpolate=True):
    """
    array:       nd array
    posList:     ([(z,)y,x]...)
    windowSize:  scalar (in pixel or as percent < 1.) or ((z,)y,x)
                 if arr.ndim > 2, and len(windowSize) == 2, then
                 cut out section-wise (higher dimensions stay the same)
    sectWise:    conern only XY of windowSize (higher dimensions stay the same)
    interpolate: shift array by subpixel interpolation to adjust center

    return:      list of array centered at each pos in posList
    """
    shape = N.array(arr.shape)
    center = shape / 2.
    # prepare N-dimensional window size
    try:
        len(windowSize)  # seq
        if sectWise:
            windowSize = windowSize[-2:]
        if len(windowSize) != arr.ndim:
            dim = len(windowSize)
            windowSize = tuple(shape[:-dim]) + tuple(windowSize)
    except TypeError:  # scaler
        if windowSize < 1 and windowSize > 0:  # percentage
            w = shape * windowSize
            if sectWise:
                w[:-2] = shape[:-2]
            windowSize = w.astype(N.uint16)
        else:
            windowSize = N.where(shape >= windowSize, windowSize, shape)
            if sectWise:
                windowSize = arr.shape[:-2] + windowSize[-2:]
    windowSize = N.asarray(windowSize)

    # cutout individual position
    arrList = []
    for pos in posList:
        # prepare N-dimensional coordinate
        n = len(pos)
        if n != len(windowSize):
            temp = center.copy()
            center[-n:] = pos
            pos = center

        # calculate idx
        ori = pos - (windowSize / 2.)  # float value
        oidx = N.ceil(ori)  # idx
        subpxl = oidx - ori  # subpixel mod
        if interpolate and N.sometrue(subpxl):  # comit to make shift
            SHIFT = 1
        else:
            SHIFT = 0

        # prepare slice
        # when comitted to make shift, first cut out window+1,
        # then make subpixle shift, and then cutout 1 edge
        slc = [Ellipsis]  # Ellipsis is unnecessary, just in case...
        slc_edge = [slice(1, -1, None)] * arr.ndim
        for d in range(arr.ndim):
            start = oidx[d] - SHIFT
            if start < 0:
                start = 0
                slc_edge[d] = slice(0, slc_edge[d].stop, None)
            stop = oidx[d] + windowSize[d] + SHIFT
            if stop > shape[d]:
                stop = shape[d]
                slc_edge[d] = slice(slc_edge[d].start, shape[d], None)
            slc += [slice(int(start), int(stop), None)]

        # cutout, shift and cutout
        try:
            canvas = arr[slc]
            if SHIFT:
                canvas = U.nd.shift(canvas, subpxl)
                canvas = canvas[slc_edge]
            check = 1
        except IndexError:
            print 'position ', pos, ' was skipped'
            check = 0
            raise
        if check:
            arrList += [N.ascontiguousarray(canvas)]

    return arrList
Beispiel #6
0
def arr_log(arr):
    logArr = N.log(arr)
    return N.where(logArr < 0, 0, logArr)