def _smoothBorder(arr, start, stop, smooth, value): """ start, stop: [z,y,x] """ # prepare coordinates shape = N.array(arr.shape) start = N.ceil(start).astype(N.int16) stop = N.ceil(stop).astype(N.int16) smooth_start = start - smooth smooth_stop = stop + smooth smooth_start = N.where(smooth_start < 0, 0, smooth_start) smooth_stop = N.where(smooth_stop > shape, shape, smooth_stop) #print smooth_start, smooth_stop import copy sliceTemplate = [slice(None, None, None)] * arr.ndim shapeTemplate = list(shape) for d in range(arr.ndim): smooth_shape = shapeTemplate[:d] + shapeTemplate[d + 1:] # make an array containing the edge value edges = N.empty([2] + smooth_shape, N.float32) # start side slc = copy.copy(sliceTemplate) slc[d] = slice(start[d], start[d] + 1, None) edges[0] = arr[slc].reshape(smooth_shape) # stop side slc = copy.copy(sliceTemplate) slc[d] = slice(stop[d] - 1, stop[d], None) edges[1] = arr[slc].reshape(smooth_shape) edges = (edges - value) / float( smooth + 1) # this value can be array?? # both side for s, side in enumerate([start, stop]): if s == 0: rs = range(smooth_start[d], start[d]) rs.sort(reverse=True) elif s == 1: rs = range(stop[d], smooth_stop[d]) # smoothing for f, i in enumerate(rs): slc = copy.copy(sliceTemplate) slc[d] = slice(i, i + 1, None) edgeArr = edges[s].reshape(arr[slc].shape) #arr[slc] += edgeArr * (smooth - f) arr[slc] = arr[slc] + edgeArr * (smooth - f) # casting rule arr = N.ascontiguousarray(arr) return arr
def img2polar2D(img, center, final_radius=None, initial_radius=None, phase_width=360): """ img: array center: coordinate y, x final_radius: ending radius initial_radius: starting radius phase_width: npixles / circle """ if img.ndim > 2 or len(center) > 2: raise ValueError, 'this function only support 2D, you entered %i-dim array and %i-dim center coordinate' % ( img.ndim, len(center)) if initial_radius is None: initial_radius = 0 if final_radius is None: rad0 = N.ceil(N.array(img.shape) - center) final_radius = min((min(rad0), min(N.ceil(center)))) if phase_width is None: phase_width = N.sum(img.shape[-2:]) * 2 theta, R = np.meshgrid(np.linspace(0, 2 * np.pi, phase_width), np.arange(initial_radius, final_radius)) Ycart, Xcart = polar2cart2D(R, theta, center) Ycart = N.where(Ycart >= img.shape[0], img.shape[0] - 1, Ycart) Xcart = N.where(Xcart >= img.shape[1], img.shape[1] - 1, Xcart) Ycart = Ycart.astype(int) Xcart = Xcart.astype(int) polar_img = img[Ycart, Xcart] polar_img = np.reshape(polar_img, (final_radius - initial_radius, phase_width)) return polar_img
def mask_gaussianND(arr, zyx, v, sigma=2., ret=None, rot=0, clipZero=True): ''' subtract elliptical gaussian at y,x with peakVal v if ret, return arr, else, arr itself is edited ''' import imgGeo zyx = N.asarray(zyx) ndim = arr.ndim shape = N.array(arr.shape) try: if len(sigma) != ndim: raise ValueError, 'len(sigma) must be the same as len(shape)' else: sigma = N.asarray(sigma) except TypeError: #(TypeError, ValueError): sigma = N.asarray([sigma] * ndim) # prepare small window slc = imgGeo.nearbyRegion(shape, N.floor(zyx), sigma * 10) inds, LD = imgFit.rotateIndicesND(slc, dtype=N.float32, rot=rot) param = ( 0, v, ) + tuple(zyx) + tuple(sigma) sidx = 2 + ndim g = imgFit.yGaussianND(N.asarray(param), inds, sidx).astype(arr.dtype.type) roi = arr[slc] if clipZero: g = N.where(g > roi, roi, g) if ret: e = N.zeros_like(arr) e[slc] = g # this may be faster than copy() return arr - e else: arr[slc] -= g
def Xcorr(a, b, highpassSigma=2.5, wiener=0.2, cutoffFreq=3, forceSecondPeak=None, acceptOrigin=True, maskSigmaFact=1., removeY=None, removeX=None, ret=None, normalize=True, gFit=True, lap=None, win=11): """ returns (y,x), image if ret is True, returns [v, yx, image] to get yx cordinate of the image, yx += N.divide(picture.shape, 2) a, b: 2D array highpassSigma: sigma value used for highpass pre-filter wiener: wiener value used for highpass pre-filter cutoffFreq: kill lowest frequency component from 0 to this level forceSecondPeak: If input is n>0 (True is 1), pick up n-th peak acceptOrigin: If None, result at origin is rejected, look for the next peak maskSigmaFact: Modifier to remove previous peak to look for another peak removeYX: Rremove given number of pixel high intensity lines of the Xcorr Y: Vertical, X: Horizontal normalize: intensity normalized gFit: peak is fitted to 2D gaussian array, if None use center of mass win: window for gFit if b is a + (y,x) then, answer is (-y,-x) """ shapeA = N.asarray(a.shape) shapeB = N.asarray(b.shape) shapeM = N.max([shapeA, shapeB], axis=0) shapeM = N.where(shapeM % 2, shapeM + 1, shapeM) center = shapeM / 2. arrs = [a, b] arrsS = ['a', 'b'] arrsF = [] for i, arr in enumerate(arrs): if arr.dtype not in [N.float32, N.float64]: arr = N.asarray(arr, N.float32) # this convolution has to be done beforehand to remove 2 pixels at the edge if lap == 'nothing': pass elif lap: arr = arr_Laplace(arr, mask=2) else: arr = arr_sorbel(arr, mask=1) if N.sometrue(shapeA < shapeM): arr = paddingMed(arr, shapeM) if normalize: mi, ma, me, sd = U.mmms(arr) arr = (arr - me) / sd if i == 1: arr = F.shift(arr) af = F.rfft(arr) af = highPassF(af, highpassSigma, wiener, cutoffFreq) arrsF.append(af) # start cross correlation af, bf = arrsF bf = bf.conjugate() cf = af * bf # go back to space domain c = F.irfft(cf) # c = _changeOrigin(cr) # removing lines if removeX: yi, xi = N.indices((removeX, shapeM[-1])) #sx)) yi += center[-2] - removeX / 2. #sy/2 - removeX/2 c[yi, xi] = 0 if removeY: yi, xi = N.indices((shapeM[-2], removeY)) #sy, removeY)) xi += center[-1] - removeY / 2. #sx/2 - removeY/2 c[yi, xi] = 0 # find the first peak if gFit: v, yx, s = findMaxWithGFit(c, win=win) #, window=win, gFit=gFit) if v == 0: v, yx, s = findMaxWithGFit(c, win=win + 2) #, window=win+2, gFit=gFit) if v == 0: v = U.findMax(c)[0] yx = N.add(yx, 0.5) #yx += 0.5 else: vzyx = U.findMax(c) v = vzyx[0] yx = vzyx[-2:] s = 2.5 yx -= center if N.alltrue(N.abs(yx) < 1.0) and not acceptOrigin: forceSecondPeak = True # forceSecondPeak: if not forceSecondPeak: forceSecondPeak = 0 for i in range(int(forceSecondPeak)): print '%i peak was removed' % (i + 1) #, sigma: %.2f' % (i+1, s) yx += center g = gaussianArr2D(c.shape, sigma=s / maskSigmaFact, peakVal=v, orig=yx) c = c - g #c = mask_gaussian(c, yx[0], yx[1], v, s) if gFit: v, yx, s = findMaxWithGFit(c, win=win) #, window=win, gFit=gFit) if v == 0: v, yx, s = findMaxWithGFit(c, win=win + 2) #, window=win+2, gFit=gFit) if v == 0: v = U.findMax(c)[0] yx -= (center - 0.5) else: vzyx = U.findMax(c) v = vzyx[0] if not gFit: yx = centerOfMass(c, vzyx[-2:]) - center if lap is not 'nothing': c = paddingValue(c, shapeM + 2) if ret == 2: return yx, af, bf.conjugate() elif ret: return v, yx, c else: return yx, c
def pointsCutOutND(arr, posList, windowSize=100, sectWise=None, interpolate=True): """ array: nd array posList: ([(z,)y,x]...) windowSize: scalar (in pixel or as percent < 1.) or ((z,)y,x) if arr.ndim > 2, and len(windowSize) == 2, then cut out section-wise (higher dimensions stay the same) sectWise: conern only XY of windowSize (higher dimensions stay the same) interpolate: shift array by subpixel interpolation to adjust center return: list of array centered at each pos in posList """ shape = N.array(arr.shape) center = shape / 2. # prepare N-dimensional window size try: len(windowSize) # seq if sectWise: windowSize = windowSize[-2:] if len(windowSize) != arr.ndim: dim = len(windowSize) windowSize = tuple(shape[:-dim]) + tuple(windowSize) except TypeError: # scaler if windowSize < 1 and windowSize > 0: # percentage w = shape * windowSize if sectWise: w[:-2] = shape[:-2] windowSize = w.astype(N.uint16) else: windowSize = N.where(shape >= windowSize, windowSize, shape) if sectWise: windowSize = arr.shape[:-2] + windowSize[-2:] windowSize = N.asarray(windowSize) # cutout individual position arrList = [] for pos in posList: # prepare N-dimensional coordinate n = len(pos) if n != len(windowSize): temp = center.copy() center[-n:] = pos pos = center # calculate idx ori = pos - (windowSize / 2.) # float value oidx = N.ceil(ori) # idx subpxl = oidx - ori # subpixel mod if interpolate and N.sometrue(subpxl): # comit to make shift SHIFT = 1 else: SHIFT = 0 # prepare slice # when comitted to make shift, first cut out window+1, # then make subpixle shift, and then cutout 1 edge slc = [Ellipsis] # Ellipsis is unnecessary, just in case... slc_edge = [slice(1, -1, None)] * arr.ndim for d in range(arr.ndim): start = oidx[d] - SHIFT if start < 0: start = 0 slc_edge[d] = slice(0, slc_edge[d].stop, None) stop = oidx[d] + windowSize[d] + SHIFT if stop > shape[d]: stop = shape[d] slc_edge[d] = slice(slc_edge[d].start, shape[d], None) slc += [slice(int(start), int(stop), None)] # cutout, shift and cutout try: canvas = arr[slc] if SHIFT: canvas = U.nd.shift(canvas, subpxl) canvas = canvas[slc_edge] check = 1 except IndexError: print 'position ', pos, ' was skipped' check = 0 raise if check: arrList += [N.ascontiguousarray(canvas)] return arrList
def arr_log(arr): logArr = N.log(arr) return N.where(logArr < 0, 0, logArr)