def appResNorm(sigmaHalf):
    nFreq = 26

    m1d = Mesh.TensorMesh([[(100,5,1.5),(100.,10),(100,5,1.5)]], x0=['C'])
    sigma = np.zeros(m1d.nC) + sigmaHalf
    sigma[m1d.gridCC[:]>200] = 1e-8

    # Calculate the analytic fields
    freqs = np.logspace(4,-4,nFreq)
    Z = []
    for freq in freqs:
        Ed, Eu, Hd, Hu = NSEM.Utils.getEHfields(m1d,sigma,freq,np.array([200]))
        Z.append((Ed + Eu)/(Hd + Hu))

    Zarr = np.concatenate(Z)

    app_r, app_p = NSEM.Utils.appResPhs(freqs,Zarr)

    return np.linalg.norm(np.abs(app_r - np.ones(nFreq)/sigmaHalf)) / np.log10(sigmaHalf)
Beispiel #2
0
def plot_pseudoSection(DCsurvey, axs, stype='dpdp', dtype="appc", clim=None):
    """
        Read list of 2D tx-rx location and plot a speudo-section of apparent
        resistivity.

        Assumes flat topo for now...

        Input:
        :param d2D, z0
        :switch stype -> Either 'pdp' (pole-dipole) | 'dpdp' (dipole-dipole)
        :switch dtype=-> Either 'appr' (app. res) | 'appc' (app. con) | 'volt' (potential)
        Output:
        :figure scatter plot overlayed on image

        Edited Feb 17th, 2016

        @author: dominiquef

    """
    from SimPEG import np
    from scipy.interpolate import griddata
    import pylab as plt

    # Set depth to 0 for now
    z0 = 0.

    # Pre-allocate
    midx = []
    midz = []
    rho = []
    LEG = []
    count = 0  # Counter for data
    for ii in range(DCsurvey.nSrc):

        Tx = DCsurvey.srcList[ii].loc
        Rx = DCsurvey.srcList[ii].rxList[0].locs

        nD = DCsurvey.srcList[ii].rxList[0].nD

        data = DCsurvey.dobs[count:count + nD]
        count += nD

        # Get distances between each poles A-B-M-N
        if stype == 'pdp':
            MA = np.abs(Tx[0] - Rx[0][:, 0])
            NA = np.abs(Tx[0] - Rx[1][:, 0])
            MN = np.abs(Rx[1][:, 0] - Rx[0][:, 0])

            # Create mid-point location
            Cmid = Tx[0]
            Pmid = (Rx[0][:, 0] + Rx[1][:, 0]) / 2
            if DCsurvey.mesh.dim == 2:
                zsrc = Tx[1]
            elif DCsurvey.mesh.dim == 3:
                zsrc = Tx[2]

        elif stype == 'dpdp':
            MA = np.abs(Tx[0][0] - Rx[0][:, 0])
            MB = np.abs(Tx[1][0] - Rx[0][:, 0])
            NA = np.abs(Tx[0][0] - Rx[1][:, 0])
            NB = np.abs(Tx[1][0] - Rx[1][:, 0])

            # Create mid-point location
            Cmid = (Tx[0][0] + Tx[1][0]) / 2
            Pmid = (Rx[0][:, 0] + Rx[1][:, 0]) / 2
            if DCsurvey.mesh.dim == 2:
                zsrc = (Tx[0][1] + Tx[1][1]) / 2
            elif DCsurvey.mesh.dim == 3:
                zsrc = (Tx[0][2] + Tx[1][2]) / 2

        # Change output for dtype
        if dtype == 'volt':

            rho = np.hstack([rho, data])

        else:

            # Compute pant leg of apparent rho
            if stype == 'pdp':

                leg = data * 2 * np.pi * MA * (MA + MN) / MN

            elif stype == 'dpdp':

                leg = data * 2 * np.pi / (1 / MA - 1 / MB + 1 / NB - 1 / NA)
                LEG.append(1. / (2 * np.pi) *
                           (1 / MA - 1 / MB + 1 / NB - 1 / NA))
            else:
                print """dtype must be 'pdp'(pole-dipole) | 'dpdp' (dipole-dipole) """
                break

            if dtype == 'appc':

                leg = np.log10(abs(1. / leg))
                rho = np.hstack([rho, leg])

            elif dtype == 'appr':

                leg = np.log10(abs(leg))
                rho = np.hstack([rho, leg])

            else:
                print """dtype must be 'appr' | 'appc' | 'volt' """
                break

        midx = np.hstack([midx, (Cmid + Pmid) / 2])
        if DCsurvey.mesh.dim == 3:
            midz = np.hstack([midz, -np.abs(Cmid - Pmid) / 2 + zsrc])
        elif DCsurvey.mesh.dim == 2:
            midz = np.hstack([midz, -np.abs(Cmid - Pmid) / 2 + zsrc])
    ax = axs

    # Grid points
    grid_x, grid_z = np.mgrid[np.min(midx):np.max(midx),
                              np.min(midz):np.max(midz)]
    grid_rho = griddata(np.c_[midx, midz],
                        rho.T, (grid_x, grid_z),
                        method='linear')

    if clim == None:
        vmin, vmax = rho.min(), rho.max()
    else:
        vmin, vmax = clim[0], clim[1]

    grid_rho = np.ma.masked_where(np.isnan(grid_rho), grid_rho)
    ph = plt.pcolormesh(grid_x[:, 0],
                        grid_z[0, :],
                        grid_rho.T,
                        clim=(vmin, vmax),
                        vmin=vmin,
                        vmax=vmax)
    cbar = plt.colorbar(format="$10^{%.1f}$",
                        fraction=0.04,
                        orientation="horizontal")

    cmin, cmax = cbar.get_clim()
    ticks = np.linspace(cmin, cmax, 3)
    cbar.set_ticks(ticks)
    cbar.ax.tick_params(labelsize=10)

    if dtype == 'appc':
        cbar.set_label("App.Cond", size=12)
    elif dtype == 'appr':
        cbar.set_label("App.Res.", size=12)
    elif dtype == 'volt':
        cbar.set_label("Potential (V)", size=12)

    # Plot apparent resistivity
    ax.scatter(midx,
               midz,
               s=10,
               c=rho.T,
               vmin=vmin,
               vmax=vmax,
               clim=(vmin, vmax))

    #ax.set_xticklabels([])
    #ax.set_yticklabels([])

    plt.gca().set_aspect('equal', adjustable='box')

    return ph, LEG
Beispiel #3
0
def run(plotIt=True):
    """
    1D FDEM and TDEM inversions
    ===========================

    This example is used in the paper Heagy et al 2016 (in prep)

    """

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10., 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    # Conductivity model
    layerz = np.r_[-200., -100.]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 5e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz)*sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # Mapping
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    mtrue = np.log(sigma[active])

    # ----- FDEM problem & survey -----
    rxlocs = Utils.ndgrid([np.r_[50.], np.r_[0], np.r_[0.]])
    bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real')
    bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag')

    freqs = np.logspace(2, 3, 5)
    srcLoc = np.array([0., 0., 0.])

    print('min skin depth = ', 500./np.sqrt(freqs.max() * sig_half),
          'max skin depth = ', 500./np.sqrt(freqs.min() * sig_half))
    print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(),
          'max z ', mesh.vectorCCz.max())

    srcList = []
    [srcList.append(FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc,
                                       orientation='Z')) for freq in freqs]

    surveyFD = FDEM.Survey(srcList)
    prbFD = FDEM.Problem3D_b(mesh, mapping=mapping)
    prbFD.pair(surveyFD)
    std = 0.03
    surveyFD.makeSyntheticData(mtrue, std)
    surveyFD.eps = np.linalg.norm(surveyFD.dtrue)*1e-5

    # FDEM inversion
    np.random.seed(1)
    dmisfit = DataMisfit.l2_DataMisfit(surveyFD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives
    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()

    inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest, target])
    m0 = np.log(np.ones(mtrue.size)*sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbFD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptFD = inv.run(m0)

    # TDEM problem
    times = np.logspace(-4, np.log10(2e-3), 10)
    print('min diffusion distance ', 1.28*np.sqrt(times.min()/(sig_half*mu_0)),
          'max diffusion distance ', 1.28*np.sqrt(times.max()/(sig_half*mu_0)))
    rx = TDEM.Rx(rxlocs, times, 'bz')
    src = TDEM.Src.MagDipole([rx], waveform=TDEM.Src.StepOffWaveform(),
                             loc=srcLoc)  # same src location as FDEM problem

    surveyTD = TDEM.Survey([src])
    prbTD = TDEM.Problem3D_b(mesh, mapping=mapping)
    prbTD.timeSteps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)]
    prbTD.pair(surveyTD)
    prbTD.Solver = SolverLU

    std = 0.03
    surveyTD.makeSyntheticData(mtrue, std)
    surveyTD.std = std
    surveyTD.eps = np.linalg.norm(surveyTD.dtrue)*1e-5

    # TDEM inversion
    dmisfit = DataMisfit.l2_DataMisfit(surveyTD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives
    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()

    inv = Inversion.BaseInversion(invProb, directiveList=[beta, betaest, target])
    m0 = np.log(np.ones(mtrue.size)*sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbTD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptTD = inv.run(m0)

    if plotIt:
        import matplotlib
        fig = plt.figure(figsize = (10, 8))
        ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
        ax1 = plt.subplot2grid((2, 2), (0, 1))
        ax2 = plt.subplot2grid((2, 2), (1, 1))

        fs = 13  # fontsize
        matplotlib.rcParams['font.size'] = fs

        # Plot the model
        ax0.semilogx(sigma[active], mesh.vectorCCz[active], 'k-', lw=2)
        ax0.semilogx(np.exp(moptFD), mesh.vectorCCz[active], 'bo', ms=6)
        ax0.semilogx(np.exp(moptTD), mesh.vectorCCz[active], 'r*', ms=10)
        ax0.set_ylim(-700, 0)
        ax0.set_xlim(5e-3, 1e-1)

        ax0.set_xlabel('Conductivity (S/m)', fontsize=fs)
        ax0.set_ylabel('Depth (m)', fontsize=fs)
        ax0.grid(which='both', color='k', alpha=0.5, linestyle='-',
                 linewidth=0.2)
        ax0.legend(['True', 'FDEM', 'TDEM'], fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax1.plot(freqs, -surveyFD.dobs[::2], 'k-', lw=2)
        ax1.plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2)

        dpredFD = surveyFD.dpred(moptTD)
        ax1.loglog(freqs, -dpredFD[::2], 'bo', ms=6)
        ax1.loglog(freqs, -dpredFD[1::2], 'b+', markeredgewidth=2., ms=10)

        ax2.loglog(times, surveyTD.dobs, 'k-', lw=2)
        ax2.loglog(times, surveyTD.dpred(moptTD), 'r*', ms=10)
        ax2.set_xlim(times.min(), times.max())

        # Labels, gridlines, etc
        ax2.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)
        ax1.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)

        ax1.set_xlabel('Frequency (Hz)', fontsize=fs)
        ax1.set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        ax2.set_xlabel('Time (s)', fontsize=fs)
        ax2.set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        ax2.legend(("Obs", "Pred"), fontsize=fs)
        ax1.legend(("Obs (real)", "Obs (imag)", "Pred (real)", "Pred (imag)"),
                   fontsize=fs)
        ax1.set_xlim(freqs.max(), freqs.min())

        ax0.set_title("(a) Recovered Models", fontsize=fs)
        ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs)
        ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)
        plt.show()
Beispiel #4
0
def plot_pseudoSection(Tx,Rx,data,z0, stype):
    
    from SimPEG import np, mkvc
    from scipy.interpolate import griddata
    from matplotlib.colors import LogNorm
    import pylab as plt
    import re
    """
        Read list of 2D tx-rx location and plot a speudo-section of apparent
        resistivity.
        
        Assumes flat topo for now...
    
        Input:
        :param d2D, z0
        :switch stype -> Either 'pdp' (pole-dipole) | 'dpdp' (dipole-dipole)
    
        Output:
        :figure scatter plot overlayed on image
        
        Created on Mon December 7th, 2015
    
        @author: dominiquef
    
    """
    #d2D = np.asarray(d2D)
    
    midl = []
    midz = []
    rho = []
    
    for ii in range(len(Tx)):
        # Get distances between each poles
        rC1P1 = np.abs(Tx[ii][0] - Rx[ii][:,0]) 
        rC2P1 = np.abs(Tx[ii][1] - Rx[ii][:,0])
        rC1P2 = np.abs(Tx[ii][1] - Rx[ii][:,1])
        rC2P2 = np.abs(Tx[ii][0] - Rx[ii][:,1])
        rP1P2 = np.abs(Rx[ii][:,1] - Rx[ii][:,0])    
    
        # Compute apparent resistivity
        if re.match(stype,'pdp'):
            rho = np.hstack([rho, data[ii] * 2*np.pi  * rC1P1 * ( rC1P1 + rP1P2 ) / rP1P2] )
            
        elif re.match(stype,'dpdp'):
            rho = np.hstack([rho, data[ii] * 2*np.pi / ( 1/rC1P1 - 1/rC2P1 - 1/rC1P2 + 1/rC2P2 ) ])
    
        Cmid = (Tx[ii][0] + Tx[ii][1])/2
        Pmid = (Rx[ii][:,0] + Rx[ii][:,1])/2
    
        midl = np.hstack([midl, ( Cmid + Pmid )/2 ])
        midz = np.hstack([midz, -np.abs(Cmid-Pmid)/2 + z0 ])
    
   
    # Grid points
    grid_x, grid_z = np.mgrid[np.min(midl):np.max(midl), np.min(midz):np.max(midz)]
    grid_rho = griddata(np.c_[midl,midz], np.log10(abs(1/rho.T)), (grid_x, grid_z), method='linear')
    
    
    #plt.subplot(2,1,2)
    plt.imshow(grid_rho.T, extent = (np.min(midl),np.max(midl),np.min(midz),np.max(midz)), origin='lower', alpha=0.8)
    cbar = plt.colorbar(format = '%.2f',fraction=0.02)
    cmin,cmax = cbar.get_clim()
    ticks = np.linspace(cmin,cmax,3)
    cbar.set_ticks(ticks)
    
    # Plot apparent resistivity
    plt.scatter(midl,midz,s=50,c=np.log10(abs(1/rho.T)))
Beispiel #5
0
def plot_pseudoSection(DCsurvey, axs, stype='dpdp', dtype="appc", clim=None):
    """
        Read list of 2D tx-rx location and plot a speudo-section of apparent
        resistivity.

        Assumes flat topo for now...

        Input:
        :param d2D, z0
        :switch stype -> Either 'pdp' (pole-dipole) | 'dpdp' (dipole-dipole)
        :switch dtype=-> Either 'appr' (app. res) | 'appc' (app. con) | 'volt' (potential)
        Output:
        :figure scatter plot overlayed on image

        Edited Feb 17th, 2016

        @author: dominiquef

    """
    from SimPEG import np
    from scipy.interpolate import griddata
    import pylab as plt

    # Set depth to 0 for now
    z0 = 0.

    # Pre-allocate
    midx = []
    midz = []
    rho = []
    LEG = []
    count = 0 # Counter for data
    for ii in range(DCsurvey.nSrc):

        Tx = DCsurvey.srcList[ii].loc
        Rx = DCsurvey.srcList[ii].rxList[0].locs

        nD = DCsurvey.srcList[ii].rxList[0].nD

        data = DCsurvey.dobs[count:count+nD]
        count += nD

        # Get distances between each poles A-B-M-N
        if stype == 'pdp':
            MA = np.abs(Tx[0] - Rx[0][:,0])
            NA = np.abs(Tx[0] - Rx[1][:,0])
            MN = np.abs(Rx[1][:,0] - Rx[0][:,0])

            # Create mid-point location
            Cmid = Tx[0]
            Pmid = (Rx[0][:,0] + Rx[1][:,0])/2
            if DCsurvey.mesh.dim == 2:
                zsrc = Tx[1]
            elif DCsurvey.mesh.dim ==3:
                zsrc = Tx[2]

        elif stype == 'dpdp':
            MA = np.abs(Tx[0][0] - Rx[0][:,0])
            MB = np.abs(Tx[1][0] - Rx[0][:,0])
            NA = np.abs(Tx[0][0] - Rx[1][:,0])
            NB = np.abs(Tx[1][0] - Rx[1][:,0])

            # Create mid-point location
            Cmid = (Tx[0][0] + Tx[1][0])/2
            Pmid = (Rx[0][:,0] + Rx[1][:,0])/2
            if DCsurvey.mesh.dim == 2:
                zsrc = (Tx[0][1] + Tx[1][1])/2
            elif DCsurvey.mesh.dim ==3:
                zsrc = (Tx[0][2] + Tx[1][2])/2

        # Change output for dtype
        if dtype == 'volt':

            rho = np.hstack([rho,data])

        else:

            # Compute pant leg of apparent rho
            if stype == 'pdp':

                leg =  data * 2*np.pi  * MA * ( MA + MN ) / MN

            elif stype == 'dpdp':

                leg = data * 2*np.pi / ( 1/MA - 1/MB + 1/NB - 1/NA )
                LEG.append(1./(2*np.pi) *( 1/MA - 1/MB + 1/NB - 1/NA ))
            else:
                print("""dtype must be 'pdp'(pole-dipole) | 'dpdp' (dipole-dipole) """)
                break


            if dtype == 'appc':

                leg = np.log10(abs(1./leg))
                rho = np.hstack([rho,leg])

            elif dtype == 'appr':

                leg = np.log10(abs(leg))
                rho = np.hstack([rho,leg])

            else:
                print("""dtype must be 'appr' | 'appc' | 'volt' """)
                break


        midx = np.hstack([midx, ( Cmid + Pmid )/2 ])
        if DCsurvey.mesh.dim==3:
            midz = np.hstack([midz, -np.abs(Cmid-Pmid)/2 + zsrc ])
        elif DCsurvey.mesh.dim==2:
            midz = np.hstack([midz, -np.abs(Cmid-Pmid)/2 + zsrc ])
    ax = axs

    # Grid points
    grid_x, grid_z = np.mgrid[np.min(midx):np.max(midx), np.min(midz):np.max(midz)]
    grid_rho = griddata(np.c_[midx,midz], rho.T, (grid_x, grid_z), method='linear')

    if clim == None:
        vmin, vmax = rho.min(), rho.max()
    else:
        vmin, vmax = clim[0], clim[1]

    grid_rho = np.ma.masked_where(np.isnan(grid_rho), grid_rho)
    ph = plt.pcolormesh(grid_x[:,0],grid_z[0,:],grid_rho.T, clim=(vmin, vmax), vmin=vmin, vmax=vmax)
    cbar = plt.colorbar(format="$10^{%.1f}$",fraction=0.04,orientation="horizontal")

    cmin,cmax = cbar.get_clim()
    ticks = np.linspace(cmin,cmax,3)
    cbar.set_ticks(ticks)
    cbar.ax.tick_params(labelsize=10)

    if dtype == 'appc':
        cbar.set_label("App.Cond",size=12)
    elif dtype == 'appr':
        cbar.set_label("App.Res.",size=12)
    elif dtype == 'volt':
        cbar.set_label("Potential (V)",size=12)

    # Plot apparent resistivity
    ax.scatter(midx,midz,s=10,c=rho.T, vmin =vmin, vmax = vmax, clim=(vmin, vmax))

    #ax.set_xticklabels([])
    #ax.set_yticklabels([])

    plt.gca().set_aspect('equal', adjustable='box')



    return ph, LEG
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True):
    """
        DC Forward Simulation
        =====================

        Forward model conductive spheres in a half-space and plot a pseudo-section

        Created by @fourndo on Mon Feb 01 19:28:06 2016

    """

    assert stype in [
        'pdp', 'dpdp'
    ], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)"

    if loc is None:
        loc = np.c_[[-50., 0., -50.], [50., 0., -50.]]
    if sig is None:
        sig = np.r_[1e-2, 1e-1, 1e-3]
    if radi is None:
        radi = np.r_[25., 25.]
    if param is None:
        param = np.r_[30., 30., 5]

    # First we need to create a mesh and a model.

    # This is our mesh
    dx = 5.

    hxind = [(dx, 15, -1.3), (dx, 75), (dx, 15, 1.3)]
    hyind = [(dx, 15, -1.3), (dx, 10), (dx, 15, 1.3)]
    hzind = [(dx, 15, -1.3), (dx, 15)]

    mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN')

    # Set background conductivity
    model = np.ones(mesh.nC) * sig[0]

    # First anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 0], radi[0], mesh.gridCC)
    model[ind] = sig[1]

    # Second anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:, 1], radi[1], mesh.gridCC)
    model[ind] = sig[2]

    # Get index of the center
    indy = int(mesh.nCy / 2)

    # Plot the model for reference
    # Define core mesh extent
    xlim = 200
    zlim = 125

    # Specify the survey type: "pdp" | "dpdp"

    # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh
    ends = [(-175, 0), (175, 0)]
    ends = np.c_[np.asarray(ends), np.ones(2).T * mesh.vectorNz[-1]]

    # Snap the endpoints to the grid. Easier to create 2D section.
    indx = Utils.closestPoints(mesh, ends)
    locs = np.c_[mesh.gridCC[indx, 0], mesh.gridCC[indx, 1],
                 np.ones(2).T * mesh.vectorNz[-1]]

    # We will handle the geometry of the survey for you and create all the combination of tx-rx along line
    # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2])
    survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1],
                                       param[2])

    # Define some global geometry
    dl_len = np.sqrt(np.sum((locs[0, :] - locs[1, :])**2))
    dl_x = (Tx[-1][0, 1] - Tx[0][0, 0]) / dl_len
    dl_y = (Tx[-1][1, 1] - Tx[0][1, 0]) / dl_len
    azm = np.arctan(dl_y / dl_x)

    #Set boundary conditions
    mesh.setCellGradBC('neumann')

    # Define the differential operators needed for the DC problem
    Div = mesh.faceDiv
    Grad = mesh.cellGrad
    Msig = Utils.sdiag(1. / (mesh.aveF2CC.T * (1. / model)))

    A = Div * Msig * Grad

    # Change one corner to deal with nullspace
    A[0, 0] = 1
    A = sp.csc_matrix(A)

    # We will solve the system iteratively, so a pre-conditioner is helpful
    # This is simply a Jacobi preconditioner (inverse of the main diagonal)
    dA = A.diagonal()
    P = sp.spdiags(1 / dA, 0, A.shape[0], A.shape[0])

    # Now we can solve the system for all the transmitters
    # We want to store the data
    data = []

    # There is probably a more elegant way to do this, but we can just for-loop through the transmitters
    for ii in range(len(Tx)):

        start_time = time.time()  # Let's time the calculations

        #print("Transmitter %i / %i\r" % (ii+1,len(Tx)))

        # Select dipole locations for receiver
        rxloc_M = np.asarray(Rx[ii][:, 0:3])
        rxloc_N = np.asarray(Rx[ii][:, 3:])

        # For usual cases "dpdp" or "gradient"
        if stype == 'pdp':
            # Create an "inifinity" pole
            tx = np.squeeze(Tx[ii][:, 0:1])
            tinf = tx + np.array([dl_x, dl_y, 0]) * dl_len * 2
            inds = Utils.closestPoints(mesh, np.c_[tx, tinf].T)
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T,
                                           'CC').T * ([-1] / mesh.vol[inds])
        else:
            inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T)
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T,
                                           'CC').T * ([-1, 1] / mesh.vol[inds])

        # Iterative Solve
        Ainvb = sp.linalg.bicgstab(P * A, P * RHS, tol=1e-5)

        # We now have the potential everywhere
        phi = Utils.mkvc(Ainvb[0])

        # Solve for phi on pole locations
        P1 = mesh.getInterpolationMat(rxloc_M, 'CC')
        P2 = mesh.getInterpolationMat(rxloc_N, 'CC')

        # Compute the potential difference
        dtemp = (P1 * phi - P2 * phi) * np.pi

        data.append(dtemp)
        print '\rTransmitter {0} of {1} -> Time:{2} sec'.format(
            ii, len(Tx),
            time.time() - start_time),

    print 'Transmitter {0} of {1}'.format(ii, len(Tx))
    print 'Forward completed'

    # Let's just convert the 3D format into 2D (distance along line) and plot
    # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D.dobs = np.hstack(data)
    # Here is an example for the first tx-rx array
    if plotIt:
        import matplotlib.pyplot as plt
        fig = plt.figure()
        ax = plt.subplot(2, 1, 1, aspect='equal')
        mesh.plotSlice(np.log10(model), ax=ax, normal='Y', ind=indy, grid=True)
        ax.set_title('E-W section at ' + str(mesh.vectorCCy[indy]) + ' m')
        plt.gca().set_aspect('equal', adjustable='box')

        plt.scatter(Tx[0][0, :], Tx[0][2, :], s=40, c='g', marker='v')
        plt.scatter(Rx[0][:, 0::3], Rx[0][:, 2::3], s=40, c='y')
        plt.xlim([-xlim, xlim])
        plt.ylim([-zlim, mesh.vectorNz[-1] + dx])

        ax = plt.subplot(2, 1, 2, aspect='equal')

        # Plot the location of the spheres for reference
        circle1 = plt.Circle((loc[0, 0] - Tx[0][0, 0], loc[2, 0]),
                             radi[0],
                             color='w',
                             fill=False,
                             lw=3)
        circle2 = plt.Circle((loc[0, 1] - Tx[0][0, 0], loc[2, 1]),
                             radi[1],
                             color='k',
                             fill=False,
                             lw=3)
        ax.add_artist(circle1)
        ax.add_artist(circle2)

        # Add the speudo section
        DC.plot_pseudoSection(survey2D, ax, stype)

        # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v')
        # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y')
        # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k')
        plt.ylim([-zlim, mesh.vectorNz[-1] + dx])

        plt.show()

        return fig, ax
def run(loc=None, sig=None, radi=None, param=None, stype='dpdp', plotIt=True):
    """
        DC Forward Simulation
        =====================

        Forward model conductive spheres in a half-space and plot a pseudo-section

        Created by @fourndo on Mon Feb 01 19:28:06 2016

    """

    assert stype in ['pdp', 'dpdp'], "Source type (stype) must be pdp or dpdp (pole dipole or dipole dipole)"


    if loc is None:
        loc = np.c_[[-50.,0.,-50.],[50.,0.,-50.]]
    if sig is None:
        sig = np.r_[1e-2,1e-1,1e-3]
    if radi is None:
        radi = np.r_[25.,25.]
    if param is None:
        param = np.r_[30.,30.,5]


    # First we need to create a mesh and a model.

    # This is our mesh
    dx    = 5.

    hxind = [(dx,15,-1.3), (dx, 75), (dx,15,1.3)]
    hyind = [(dx,15,-1.3), (dx, 10), (dx,15,1.3)]
    hzind = [(dx,15,-1.3),(dx, 15)]

    mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCN')


    # Set background conductivity
    model = np.ones(mesh.nC) * sig[0]

    # First anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:,0],radi[0],mesh.gridCC)
    model[ind] = sig[1]

    # Second anomaly
    ind = Utils.ModelBuilder.getIndicesSphere(loc[:,1],radi[1],mesh.gridCC)
    model[ind] = sig[2]

    # Get index of the center
    indy = int(mesh.nCy/2)


    # Plot the model for reference
    # Define core mesh extent
    xlim = 200
    zlim = 125

    # Specify the survey type: "pdp" | "dpdp"


    # Then specify the end points of the survey. Let's keep it simple for now and survey above the anomalies, top of the mesh
    ends = [(-175,0),(175,0)]
    ends = np.c_[np.asarray(ends),np.ones(2).T*mesh.vectorNz[-1]]

    # Snap the endpoints to the grid. Easier to create 2D section.
    indx = Utils.closestPoints(mesh, ends )
    locs = np.c_[mesh.gridCC[indx,0],mesh.gridCC[indx,1],np.ones(2).T*mesh.vectorNz[-1]]

    # We will handle the geometry of the survey for you and create all the combination of tx-rx along line
    # [Tx, Rx] = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2])
    survey, Tx, Rx = DC.gen_DCIPsurvey(locs, mesh, stype, param[0], param[1], param[2])

    # Define some global geometry
    dl_len = np.sqrt( np.sum((locs[0,:] - locs[1,:])**2) )
    dl_x = ( Tx[-1][0,1] - Tx[0][0,0] ) / dl_len
    dl_y = ( Tx[-1][1,1] - Tx[0][1,0]  ) / dl_len
    azm =  np.arctan(dl_y/dl_x)

    #Set boundary conditions
    mesh.setCellGradBC('neumann')

    # Define the differential operators needed for the DC problem
    Div = mesh.faceDiv
    Grad = mesh.cellGrad
    Msig = Utils.sdiag(1./(mesh.aveF2CC.T*(1./model)))

    A = Div*Msig*Grad

    # Change one corner to deal with nullspace
    A[0,0] = 1
    A = sp.csc_matrix(A)

    # We will solve the system iteratively, so a pre-conditioner is helpful
    # This is simply a Jacobi preconditioner (inverse of the main diagonal)
    dA = A.diagonal()
    P = sp.spdiags(1/dA,0,A.shape[0],A.shape[0])

    # Now we can solve the system for all the transmitters
    # We want to store the data
    data = []

    # There is probably a more elegant way to do this, but we can just for-loop through the transmitters
    for ii in range(len(Tx)):

        start_time = time.time() # Let's time the calculations

        #print("Transmitter %i / %i\r" % (ii+1,len(Tx)))

        # Select dipole locations for receiver
        rxloc_M = np.asarray(Rx[ii][:,0:3])
        rxloc_N = np.asarray(Rx[ii][:,3:])


        # For usual cases "dpdp" or "gradient"
        if stype == 'pdp':
            # Create an "inifinity" pole
            tx =  np.squeeze(Tx[ii][:,0:1])
            tinf = tx + np.array([dl_x,dl_y,0])*dl_len*2
            inds = Utils.closestPoints(mesh, np.c_[tx,tinf].T)
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1] / mesh.vol[inds] )
        else:
            inds = Utils.closestPoints(mesh, np.asarray(Tx[ii]).T )
            RHS = mesh.getInterpolationMat(np.asarray(Tx[ii]).T, 'CC').T*( [-1,1] / mesh.vol[inds] )

        # Iterative Solve
        Ainvb = sp.linalg.bicgstab(P*A,P*RHS, tol=1e-5)

        # We now have the potential everywhere
        phi = Utils.mkvc(Ainvb[0])

        # Solve for phi on pole locations
        P1 = mesh.getInterpolationMat(rxloc_M, 'CC')
        P2 = mesh.getInterpolationMat(rxloc_N, 'CC')

        # Compute the potential difference
        dtemp = (P1*phi - P2*phi)*np.pi

        data.append( dtemp )
        print '\rTransmitter {0} of {1} -> Time:{2} sec'.format(ii,len(Tx),time.time()- start_time),

    print 'Transmitter {0} of {1}'.format(ii,len(Tx))
    print 'Forward completed'

    # Let's just convert the 3D format into 2D (distance along line) and plot
    # [Tx2d, Rx2d] = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D = DC.convertObs_DC3D_to_2D(survey, np.ones(survey.nSrc))
    survey2D.dobs =np.hstack(data)
    # Here is an example for the first tx-rx array
    if plotIt:
        import matplotlib.pyplot as plt
        fig = plt.figure()
        ax = plt.subplot(2,1,1, aspect='equal')
        mesh.plotSlice(np.log10(model), ax =ax, normal = 'Y', ind = indy,grid=True)
        ax.set_title('E-W section at '+str(mesh.vectorCCy[indy])+' m')
        plt.gca().set_aspect('equal', adjustable='box')

        plt.scatter(Tx[0][0,:],Tx[0][2,:],s=40,c='g', marker='v')
        plt.scatter(Rx[0][:,0::3],Rx[0][:,2::3],s=40,c='y')
        plt.xlim([-xlim,xlim])
        plt.ylim([-zlim,mesh.vectorNz[-1]+dx])


        ax = plt.subplot(2,1,2, aspect='equal')

        # Plot the location of the spheres for reference
        circle1=plt.Circle((loc[0,0]-Tx[0][0,0],loc[2,0]),radi[0],color='w',fill=False, lw=3)
        circle2=plt.Circle((loc[0,1]-Tx[0][0,0],loc[2,1]),radi[1],color='k',fill=False, lw=3)
        ax.add_artist(circle1)
        ax.add_artist(circle2)

        # Add the speudo section
        DC.plot_pseudoSection(survey2D,ax,stype)

        # plt.scatter(Tx2d[0][:],Tx[0][2,:],s=40,c='g', marker='v')
        # plt.scatter(Rx2d[0][:],Rx[0][:,2::3],s=40,c='y')
        # plt.plot(np.r_[Tx2d[0][0],Rx2d[-1][-1,-1]],np.ones(2)*mesh.vectorNz[-1], color='k')
        plt.ylim([-zlim,mesh.vectorNz[-1]+dx])

        plt.show()

        return fig, ax
Beispiel #8
0
def plot_pseudoSection(DCsurvey, axs, stype):
    """
        Read list of 2D tx-rx location and plot a speudo-section of apparent
        resistivity.

        Assumes flat topo for now...

        Input:
        :param d2D, z0
        :switch stype -> Either 'pdp' (pole-dipole) | 'dpdp' (dipole-dipole)

        Output:
        :figure scatter plot overlayed on image

        Edited Feb 17th, 2016

        @author: dominiquef

    """
    from SimPEG import np
    from scipy.interpolate import griddata
    import pylab as plt

    # Set depth to 0 for now
    z0 = 0.

    # Pre-allocate
    midx = []
    midz = []
    rho = []
    count = 0 # Counter for data
    for ii in range(DCsurvey.nSrc):

        Tx = DCsurvey.srcList[ii].loc
        Rx = DCsurvey.srcList[ii].rxList[0].locs

        nD = DCsurvey.srcList[ii].rxList[0].nD

        data = DCsurvey.dobs[count:count+nD]
        count += nD

        # Get distances between each poles A-B-M-N
        MA = np.abs(Tx[0][0] - Rx[0][:,0])
        MB = np.abs(Tx[1][0] - Rx[0][:,0])
        NB = np.abs(Tx[1][0] - Rx[1][:,0])
        NA = np.abs(Tx[0][0] - Rx[1][:,0])
        MN = np.abs(Rx[1][:,0] - Rx[0][:,0])

        # Create mid-point location
        Cmid = (Tx[0][0] + Tx[1][0])/2
        Pmid = (Rx[0][:,0] + Rx[1][:,0])/2

        # Compute pant leg of apparent rho
        if stype == 'pdp':
            leg =  data * 2*np.pi  * MA * ( MA + MN ) / MN

            leg = np.log10(abs(1/leg))

        elif stype == 'dpdp':
            leg = data * 2*np.pi / ( 1/MA - 1/MB - 1/NB + 1/NA )


        midx = np.hstack([midx, ( Cmid + Pmid )/2 ])
        midz = np.hstack([midz, -np.abs(Cmid-Pmid)/2 + z0 ])
        rho = np.hstack([rho,leg])


    ax = axs

    # Grid points
    grid_x, grid_z = np.mgrid[np.min(midx):np.max(midx), np.min(midz):np.max(midz)]
    grid_rho = griddata(np.c_[midx,midz], rho.T, (grid_x, grid_z), method='linear')


    plt.imshow(grid_rho.T, extent = (np.min(midx),np.max(midx),np.min(midz),np.max(midz)), origin='lower', alpha=0.8, vmin = np.min(rho), vmax = np.max(rho))
    cbar = plt.colorbar(format = '%.2f',fraction=0.04,orientation="horizontal")

    cmin,cmax = cbar.get_clim()
    ticks = np.linspace(cmin,cmax,3)
    cbar.set_ticks(ticks)

    # Plot apparent resistivity
    plt.scatter(midx,midz,s=50,c=rho.T)

    ax.set_xticklabels([])

    ax.set_ylabel('Z')
    ax.yaxis.tick_right()
    ax.yaxis.set_label_position('right')
    plt.gca().set_aspect('equal', adjustable='box')


    return ax
def run(plotIt=True):
    """
        1D FDEM and TDEM inversions
        ===========================

        This example is used in the paper Heagy et al 2016 (in prep)

    """

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10., 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = Mesh.CylMesh([hx, 1, hz], '00C')

    # Conductivity model
    layerz = np.r_[-200., -100.]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 5e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # Mapping
    actMap = Maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh) * actMap
    mtrue = np.log(sigma[active])

    # ----- FDEM problem & survey -----
    rxlocs = Utils.ndgrid([np.r_[50.], np.r_[0], np.r_[0.]])
    bzi = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'real')
    bzr = FDEM.Rx.Point_bSecondary(rxlocs, 'z', 'imag')

    freqs = np.logspace(2, 3, 5)
    srcLoc = np.array([0., 0., 0.])

    print('min skin depth = ', 500. / np.sqrt(freqs.max() * sig_half),
          'max skin depth = ', 500. / np.sqrt(freqs.min() * sig_half))
    print('max x ', mesh.vectorCCx.max(), 'min z ', mesh.vectorCCz.min(),
          'max z ', mesh.vectorCCz.max())

    srcList = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation='Z')
        for freq in freqs
    ]

    surveyFD = FDEM.Survey(srcList)
    prbFD = FDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prbFD.pair(surveyFD)
    std = 0.03
    surveyFD.makeSyntheticData(mtrue, std)
    surveyFD.eps = np.linalg.norm(surveyFD.dtrue) * 1e-5

    # FDEM inversion
    np.random.seed(1)
    dmisfit = DataMisfit.l2_DataMisfit(surveyFD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives
    beta = Directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=2.)
    target = Directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbFD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptFD = inv.run(m0)

    # TDEM problem
    times = np.logspace(-4, np.log10(2e-3), 10)
    print('min diffusion distance ',
          1.28 * np.sqrt(times.min() / (sig_half * mu_0)),
          'max diffusion distance ',
          1.28 * np.sqrt(times.max() / (sig_half * mu_0)))
    rx = TDEM.Rx.Point_b(rxlocs, times, 'z')
    src = TDEM.Src.MagDipole(
        [rx],
        waveform=TDEM.Src.StepOffWaveform(),
        loc=srcLoc  # same src location as FDEM problem
    )

    surveyTD = TDEM.Survey([src])
    prbTD = TDEM.Problem3D_b(mesh, sigmaMap=mapping, Solver=Solver)
    prbTD.timeSteps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)]
    prbTD.pair(surveyTD)

    std = 0.03
    surveyTD.makeSyntheticData(mtrue, std)
    surveyTD.std = std
    surveyTD.eps = np.linalg.norm(surveyTD.dtrue) * 1e-5

    # TDEM inversion
    dmisfit = DataMisfit.l2_DataMisfit(surveyTD)
    regMesh = Mesh.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = Regularization.Simple(regMesh)
    opt = Optimization.InexactGaussNewton(maxIterCG=10)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.
    prbTD.counter = opt.counter = Utils.Counter()
    opt.remember('xc')
    moptTD = inv.run(m0)

    if plotIt:
        plt.figure(figsize=(10, 8))
        ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
        ax1 = plt.subplot2grid((2, 2), (0, 1))
        ax2 = plt.subplot2grid((2, 2), (1, 1))

        fs = 13  # fontsize
        matplotlib.rcParams['font.size'] = fs

        # Plot the model
        ax0.semilogx(sigma[active], mesh.vectorCCz[active], 'k-', lw=2)
        ax0.semilogx(np.exp(moptFD), mesh.vectorCCz[active], 'bo', ms=6)
        ax0.semilogx(np.exp(moptTD), mesh.vectorCCz[active], 'r*', ms=10)
        ax0.set_ylim(-700, 0)
        ax0.set_xlim(5e-3, 1e-1)

        ax0.set_xlabel('Conductivity (S/m)', fontsize=fs)
        ax0.set_ylabel('Depth (m)', fontsize=fs)
        ax0.grid(which='both',
                 color='k',
                 alpha=0.5,
                 linestyle='-',
                 linewidth=0.2)
        ax0.legend(['True', 'FDEM', 'TDEM'], fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax1.plot(freqs, -surveyFD.dobs[::2], 'k-', lw=2)
        ax1.plot(freqs, -surveyFD.dobs[1::2], 'k--', lw=2)

        dpredFD = surveyFD.dpred(moptTD)
        ax1.loglog(freqs, -dpredFD[::2], 'bo', ms=6)
        ax1.loglog(freqs, -dpredFD[1::2], 'b+', markeredgewidth=2., ms=10)

        ax2.loglog(times, surveyTD.dobs, 'k-', lw=2)
        ax2.loglog(times, surveyTD.dpred(moptTD), 'r*', ms=10)
        ax2.set_xlim(times.min(), times.max())

        # Labels, gridlines, etc
        ax2.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)
        ax1.grid(which='both', alpha=0.5, linestyle='-', linewidth=0.2)

        ax1.set_xlabel('Frequency (Hz)', fontsize=fs)
        ax1.set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        ax2.set_xlabel('Time (s)', fontsize=fs)
        ax2.set_ylabel('Vertical magnetic field (-T)', fontsize=fs)

        ax2.legend(("Obs", "Pred"), fontsize=fs)
        ax1.legend(("Obs (real)", "Obs (imag)", "Pred (real)", "Pred (imag)"),
                   fontsize=fs)
        ax1.set_xlim(freqs.max(), freqs.min())

        ax0.set_title("(a) Recovered Models", fontsize=fs)
        ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs)
        ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)
Beispiel #10
0
    
     
    #==============================================================================
    # mesh2d = Mesh.TensorMesh([mesh.hx, mesh.hz], x0=(mesh.x0[0]-endl[0,0],mesh.x0[2]))
    # m3D = np.reshape(model, (mesh.nCz, mesh.nCy, mesh.nCx))
    # m2D = m3D[:,1,:]
    #==============================================================================
    
    plt.figure()
    axs = plt.subplot(2,1,1)
    
    plt.xlim([0,nc*dx])
    plt.ylim([mesh2d.vectorNy[-1]-dl_len/2,mesh2d.vectorNy[-1]])
    plt.gca().set_aspect('equal', adjustable='box')
    
    plt.pcolormesh(mesh2d.vectorNx,mesh2d.vectorNy,np.log10(m2D),alpha=0.5, cmap='gray')#axes = [mesh2d.vectorNx[0],mesh2d.vectorNx[-1],mesh2d.vectorNy[0],mesh2d.vectorNy[-1]])
    #mesh2d.plotImage(mkvc(m2D), grid=True, ax=axs)
    
    #%% Plot pseudo section
    
    DC.plot_pseudoSection(Tx2d,Rx2d,data,nz[-1],stype)
    plt.colorbar
    plt.show()

    #%% Create dcin2d inversion files and run
    inv_dir = home_dir + '\Inv2D' 
    if not os.path.exists(inv_dir):
        os.makedirs(inv_dir)
        
    mshfile2d = 'Mesh_2D.msh'
    modfile2d = 'MtIsa_2D.con'