Beispiel #1
0
    def from_prompt(args):
        if args.agent:
            agent_cls = R.lookup_agent(args.agent)
            agent_args = agent_cls.prompt(provided=args)
        else:
            h = R.lookup_actor(args.actor_host)
            w = R.lookup_actor(args.actor_worker)
            l = R.lookup_learner(args.learner)
            e = R.lookup_exp(args.exp)
            agent_args = {
                **h.prompt(args),
                **w.prompt(args),
                **l.prompt(args),
                **e.prompt(args),
            }

        env_cls = R.lookup_env(args.env)
        rwdnorm_cls = R.lookup_reward_normalizer(args.rwd_norm)

        env_args = env_cls.prompt(provided=args)
        rwdnorm_args = rwdnorm_cls.prompt(provided=args)
        if args.custom_network:
            net_args = R.lookup_network(args.custom_network).prompt()
        else:
            net_args = R.prompt_modular_args(args)
        args = DotDict({
            **args,
            **agent_args,
            **env_args,
            **rwdnorm_args,
            **net_args
        })
        return args
Beispiel #2
0
    def from_defaults(args):
        if args.agent:
            agent_cls = R.lookup_agent(args.agent)
            agent_args = agent_cls.args
        else:
            h = R.lookup_actor(args.actor_host)
            w = R.lookup_actor(args.actor_worker)
            l = R.lookup_learner(args.learner)
            e = R.lookup_exp(args.exp)
            agent_args = {**h.args, **w.args, **l.args, **e.args}

        env_cls = R.lookup_env(args.env)
        rwdnorm_cls = R.lookup_reward_normalizer(args.rwd_norm)

        env_args = env_cls.args
        rwdnorm_args = rwdnorm_cls.args
        if args.custom_network:
            net_args = R.lookup_network(args.custom_network).args
        else:
            net_args = R.lookup_modular_args(args)
        args = DotDict({
            **args,
            **agent_args,
            **env_args,
            **rwdnorm_args,
            **net_args
        })

        return args
Beispiel #3
0
    def __init__(
            self,
            args,
            log_id_dir,
            initial_step_count,
            rank=0,
    ):
        # ARGS TO STATE VARS
        self._args = args
        self.nb_learners = args.nb_learners
        self.nb_workers = args.nb_workers
        self.rank = rank
        self.nb_step = args.nb_step
        self.nb_env = args.nb_env
        self.initial_step_count = initial_step_count
        self.epoch_len = args.epoch_len
        self.summary_freq = args.summary_freq
        self.nb_learn_batch = args.nb_learn_batch
        self.rollout_queue_size = args.rollout_queue_size
        # can be none if rank != 0
        self.log_id_dir = log_id_dir

        # load saved registry classes
        REGISTRY.load_extern_classes(log_id_dir)

        # ENV (temporary)
        env_cls = REGISTRY.lookup_env(args.env)
        env = env_cls.from_args(args, 0)
        env_action_space, env_observation_space, env_gpu_preprocessor = \
            env.action_space, env.observation_space, env.gpu_preprocessor
        env.close()

        # NETWORK
        torch.manual_seed(args.seed)
        device = torch.device("cuda")  # ray handles gpus
        torch.backends.cudnn.benchmark = True
        output_space = REGISTRY.lookup_output_space(
            args.actor_worker, env_action_space)
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(
            args,
            env_observation_space,
            output_space,
            env_gpu_preprocessor,
            REGISTRY
        )
        self.network = net.to(device)
        # TODO: this is a hack, remove once queuer puts rollouts on the correct device
        self.network.device = device
        self.device = device
        self.network.train()

        # OPTIMIZER
        def optim_fn(x):
            return torch.optim.RMSprop(x, lr=args.lr, eps=1e-5, alpha=0.99)
        if args.nb_learners > 1:
            self.optimizer = NCCLOptimizer(optim_fn, self.network, self.nb_learners)
        else:
            self.optimizer = optim_fn(self.network.parameters())

        # LEARNER / EXP
        rwd_norm = REGISTRY.lookup_reward_normalizer(
            args.rwd_norm).from_args(args)
        actor_cls = REGISTRY.lookup_actor(args.actor_host)
        builder = actor_cls.exp_spec_builder(
            env.observation_space,
            env.action_space,
            net.internal_space(),
            args.nb_env * args.nb_learn_batch
        )
        w_builder = REGISTRY.lookup_actor(args.actor_worker).exp_spec_builder(
            env.observation_space,
            env.action_space,
            net.internal_space(),
            args.nb_env
        )
        actor = actor_cls.from_args(args, env.action_space)
        learner = REGISTRY.lookup_learner(args.learner).from_args(args, rwd_norm)

        exp_cls = REGISTRY.lookup_exp(args.exp).from_args(args, builder)

        self.actor = actor
        self.learner = learner
        self.exp = exp_cls.from_args(args, builder).to(device)

        # Rank 0 setup, load network/optimizer and create SummaryWriter/Saver
        if rank == 0:
            if args.load_network:
                self.network = self.load_network(self.network, args.load_network)
                print('Reloaded network from {}'.format(args.load_network))
            if args.load_optim:
                self.optimizer = self.load_optim(self.optimizer, args.load_optim)
                print('Reloaded optimizer from {}'.format(args.load_optim))

            print('Network parameters: ' + str(self.count_parameters(net)))
            self.summary_writer = SummaryWriter(log_id_dir)
            self.saver = SimpleModelSaver(log_id_dir)