Beispiel #1
0
    def from_defaults(args):
        if args.agent:
            agent_cls = R.lookup_agent(args.agent)
            agent_args = agent_cls.args
        else:
            h = R.lookup_actor(args.actor_host)
            w = R.lookup_actor(args.actor_worker)
            l = R.lookup_learner(args.learner)
            e = R.lookup_exp(args.exp)
            agent_args = {**h.args, **w.args, **l.args, **e.args}

        env_cls = R.lookup_env(args.env)
        rwdnorm_cls = R.lookup_reward_normalizer(args.rwd_norm)

        env_args = env_cls.args
        rwdnorm_args = rwdnorm_cls.args
        if args.custom_network:
            net_args = R.lookup_network(args.custom_network).args
        else:
            net_args = R.lookup_modular_args(args)
        args = DotDict({
            **args,
            **agent_args,
            **env_args,
            **rwdnorm_args,
            **net_args
        })

        return args
Beispiel #2
0
    def from_prompt(args):
        if args.agent:
            agent_cls = R.lookup_agent(args.agent)
            agent_args = agent_cls.prompt(provided=args)
        else:
            h = R.lookup_actor(args.actor_host)
            w = R.lookup_actor(args.actor_worker)
            l = R.lookup_learner(args.learner)
            e = R.lookup_exp(args.exp)
            agent_args = {
                **h.prompt(args),
                **w.prompt(args),
                **l.prompt(args),
                **e.prompt(args),
            }

        env_cls = R.lookup_env(args.env)
        rwdnorm_cls = R.lookup_reward_normalizer(args.rwd_norm)

        env_args = env_cls.prompt(provided=args)
        rwdnorm_args = rwdnorm_cls.prompt(provided=args)
        if args.custom_network:
            net_args = R.lookup_network(args.custom_network).prompt()
        else:
            net_args = R.prompt_modular_args(args)
        args = DotDict({
            **args,
            **agent_args,
            **env_args,
            **rwdnorm_args,
            **net_args
        })
        return args
Beispiel #3
0
    def __init__(self, args, log_id_dir, initial_step_count, rank):
        seed = args.seed \
            if rank == 0 \
            else args.seed + args.nb_env * rank
        print('Worker {} using seed {}'.format(rank, seed))

        # load saved registry classes
        REGISTRY.load_extern_classes(log_id_dir)

        # ENV
        engine = REGISTRY.lookup_engine(args.env)
        env_cls = REGISTRY.lookup_env(args.env)
        mgr_cls = REGISTRY.lookup_manager(args.manager)
        env_mgr = mgr_cls.from_args(args, engine, env_cls, seed=seed)

        # NETWORK
        torch.manual_seed(args.seed)
        device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
        output_space = REGISTRY.lookup_output_space(args.actor_worker,
                                                    env_mgr.action_space)
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(args, env_mgr.observation_space, output_space,
                                env_mgr.gpu_preprocessor, REGISTRY)
        actor_cls = REGISTRY.lookup_actor(args.actor_worker)
        actor = actor_cls.from_args(args, env_mgr.action_space)
        builder = actor_cls.exp_spec_builder(env_mgr.observation_space,
                                             env_mgr.action_space,
                                             net.internal_space(),
                                             env_mgr.nb_env)
        exp = REGISTRY.lookup_exp(args.exp).from_args(args, builder)

        self.actor = actor
        self.exp = exp.to(device)
        self.nb_step = args.nb_step
        self.env_mgr = env_mgr
        self.nb_env = args.nb_env
        self.network = net.to(device)
        self.device = device
        self.initial_step_count = initial_step_count

        # TODO: this should be set to eval after some number of training steps
        self.network.train()

        # SETUP state variables for run
        self.step_count = self.initial_step_count
        self.global_step_count = self.initial_step_count
        self.ep_rewards = torch.zeros(self.nb_env)
        self.rank = rank

        self.obs = dtensor_to_dev(self.env_mgr.reset(), self.device)
        self.internals = listd_to_dlist([
            self.network.new_internals(self.device) for _ in range(self.nb_env)
        ])
        self.start_time = time()
        self._weights_synced = False
Beispiel #4
0
    def __init__(
        self,
        args,
        logger,
        log_id_dir,
        initial_step_count,
        local_rank,
        global_rank,
        world_size,
    ):
        seed = (
            args.seed
            if global_rank == 0
            else args.seed + args.nb_env * global_rank
        )
        logger.info("Using {} for rank {} seed.".format(seed, global_rank))

        # ENV
        engine = REGISTRY.lookup_engine(args.env)
        env_cls = REGISTRY.lookup_env(args.env)
        mgr_cls = REGISTRY.lookup_manager(args.manager)
        env_mgr = mgr_cls.from_args(args, engine, env_cls, seed=seed)

        # NETWORK
        torch.manual_seed(args.seed)
        device = torch.device("cuda:{}".format(local_rank))
        output_space = REGISTRY.lookup_output_space(
            args.agent, env_mgr.action_space
        )
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(
            args,
            env_mgr.observation_space,
            output_space,
            env_mgr.gpu_preprocessor,
            REGISTRY,
        )
        logger.info("Network parameters: " + str(self.count_parameters(net)))

        def optim_fn(x):
            return torch.optim.RMSprop(x, lr=args.lr, eps=1e-5, alpha=0.99)

        # AGENT
        rwd_norm = REGISTRY.lookup_reward_normalizer(args.rwd_norm).from_args(
            args
        )
        agent_cls = REGISTRY.lookup_agent(args.agent)
        builder = agent_cls.exp_spec_builder(
            env_mgr.observation_space,
            env_mgr.action_space,
            net.internal_space(),
            env_mgr.nb_env,
        )
        agent = agent_cls.from_args(
            args, rwd_norm, env_mgr.action_space, builder
        )

        self.agent = agent
        self.nb_step = args.nb_step
        self.env_mgr = env_mgr
        self.nb_env = args.nb_env
        self.network = net.to(device)
        self.optimizer = optim_fn(self.network.parameters())
        self.device = device
        self.initial_step_count = initial_step_count
        self.log_id_dir = log_id_dir
        self.epoch_len = args.epoch_len
        self.summary_freq = args.summary_freq
        self.logger = logger
        self.summary_writer = SummaryWriter(
            os.path.join(log_id_dir, "rank{}".format(global_rank))
        )
        self.saver = SimpleModelSaver(log_id_dir)
        self.local_rank = local_rank
        self.global_rank = global_rank
        self.world_size = world_size
        self.updater = DistribUpdater(
            self.optimizer,
            self.network,
            args.grad_norm_clip,
            world_size,
            not args.no_divide,
        )

        if args.load_network:
            self.network = self.load_network(self.network, args.load_network)
            logger.info("Reloaded network from {}".format(args.load_network))
        if args.load_optim:
            self.optimizer = self.load_optim(self.optimizer, args.load_optim)
            logger.info("Reloaded optimizer from {}".format(args.load_optim))

        self.network.train()
Beispiel #5
0
    def __init__(
            self,
            args,
            log_id_dir,
            initial_step_count,
            rank=0,
    ):
        # ARGS TO STATE VARS
        self._args = args
        self.nb_learners = args.nb_learners
        self.nb_workers = args.nb_workers
        self.rank = rank
        self.nb_step = args.nb_step
        self.nb_env = args.nb_env
        self.initial_step_count = initial_step_count
        self.epoch_len = args.epoch_len
        self.summary_freq = args.summary_freq
        self.nb_learn_batch = args.nb_learn_batch
        self.rollout_queue_size = args.rollout_queue_size
        # can be none if rank != 0
        self.log_id_dir = log_id_dir

        # load saved registry classes
        REGISTRY.load_extern_classes(log_id_dir)

        # ENV (temporary)
        env_cls = REGISTRY.lookup_env(args.env)
        env = env_cls.from_args(args, 0)
        env_action_space, env_observation_space, env_gpu_preprocessor = \
            env.action_space, env.observation_space, env.gpu_preprocessor
        env.close()

        # NETWORK
        torch.manual_seed(args.seed)
        device = torch.device("cuda")  # ray handles gpus
        torch.backends.cudnn.benchmark = True
        output_space = REGISTRY.lookup_output_space(
            args.actor_worker, env_action_space)
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(
            args,
            env_observation_space,
            output_space,
            env_gpu_preprocessor,
            REGISTRY
        )
        self.network = net.to(device)
        # TODO: this is a hack, remove once queuer puts rollouts on the correct device
        self.network.device = device
        self.device = device
        self.network.train()

        # OPTIMIZER
        def optim_fn(x):
            return torch.optim.RMSprop(x, lr=args.lr, eps=1e-5, alpha=0.99)
        if args.nb_learners > 1:
            self.optimizer = NCCLOptimizer(optim_fn, self.network, self.nb_learners)
        else:
            self.optimizer = optim_fn(self.network.parameters())

        # LEARNER / EXP
        rwd_norm = REGISTRY.lookup_reward_normalizer(
            args.rwd_norm).from_args(args)
        actor_cls = REGISTRY.lookup_actor(args.actor_host)
        builder = actor_cls.exp_spec_builder(
            env.observation_space,
            env.action_space,
            net.internal_space(),
            args.nb_env * args.nb_learn_batch
        )
        w_builder = REGISTRY.lookup_actor(args.actor_worker).exp_spec_builder(
            env.observation_space,
            env.action_space,
            net.internal_space(),
            args.nb_env
        )
        actor = actor_cls.from_args(args, env.action_space)
        learner = REGISTRY.lookup_learner(args.learner).from_args(args, rwd_norm)

        exp_cls = REGISTRY.lookup_exp(args.exp).from_args(args, builder)

        self.actor = actor
        self.learner = learner
        self.exp = exp_cls.from_args(args, builder).to(device)

        # Rank 0 setup, load network/optimizer and create SummaryWriter/Saver
        if rank == 0:
            if args.load_network:
                self.network = self.load_network(self.network, args.load_network)
                print('Reloaded network from {}'.format(args.load_network))
            if args.load_optim:
                self.optimizer = self.load_optim(self.optimizer, args.load_optim)
                print('Reloaded optimizer from {}'.format(args.load_optim))

            print('Network parameters: ' + str(self.count_parameters(net)))
            self.summary_writer = SummaryWriter(log_id_dir)
            self.saver = SimpleModelSaver(log_id_dir)
Beispiel #6
0
    def __init__(
            self,
            args,
            logger,
            log_id_dir,
            initial_step_count,
            local_rank,
            global_rank,
            world_size
    ):
        seed = args.seed \
            if global_rank == 0 \
            else args.seed + args.nb_env * global_rank
        logger.info('Using {} for rank {} seed.'.format(seed, global_rank))

        # ENV
        engine = REGISTRY.lookup_engine(args.env)
        env_cls = REGISTRY.lookup_env(args.env)
        env_mgr = SubProcEnvManager.from_args(args, engine, env_cls, seed=seed)

        # NETWORK
        torch.manual_seed(args.seed)
        device = torch.device("cuda:{}".format(local_rank))
        output_space = REGISTRY.lookup_output_space(
            args.agent, env_mgr.action_space)
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(
            args,
            env_mgr.observation_space,
            output_space,
            env_mgr.gpu_preprocessor,
            REGISTRY
        )

        def optim_fn(x):
            return torch.optim.RMSprop(x, lr=args.lr, eps=1e-5, alpha=0.99)

        # AGENT
        rwd_norm = REGISTRY.lookup_reward_normalizer(
            args.rwd_norm).from_args(args)
        agent_cls = REGISTRY.lookup_agent(args.agent)
        builder = agent_cls.exp_spec_builder(
            env_mgr.observation_space,
            env_mgr.action_space,
            net.internal_space(),
            env_mgr.nb_env
        )
        agent = agent_cls.from_args(
            args,
            rwd_norm,
            env_mgr.action_space,
            builder
        )

        self.agent = agent
        self.nb_step = args.nb_step
        self.env_mgr = env_mgr
        self.nb_env = args.nb_env
        self.network = net.to(device)
        self.optimizer = optim_fn(self.network.parameters())
        self.device = device
        self.initial_step_count = initial_step_count
        self.log_id_dir = log_id_dir
        self.epoch_len = args.epoch_len
        self.summary_freq = args.summary_freq
        self.logger = logger
        self.local_rank = local_rank
        self.global_rank = global_rank
        self.world_size = world_size

        if args.load_network:
            self.network = self.load_network(self.network, args.load_network)
            logger.info('Reloaded network from {}'.format(args.load_network))
        if args.load_optim:
            self.optimizer = self.load_optim(self.optimizer, args.load_optim)
            logger.info('Reloaded optimizer from {}'.format(args.load_optim))

        self.network.train()
Beispiel #7
0
    def __init__(self, args, logger, log_id_dir, initial_step_count):
        # ENV
        engine = REGISTRY.lookup_engine(args.env)
        env_cls = REGISTRY.lookup_env(args.env)
        mgr_cls = REGISTRY.lookup_manager(args.manager)
        env_mgr = mgr_cls.from_args(args, engine, env_cls)

        # NETWORK
        torch.manual_seed(args.seed)
        if torch.cuda.is_available() and args.gpu_id >= 0:
            device = torch.device("cuda:{}".format(args.gpu_id))
            torch.backends.cudnn.benchmark = True
        else:
            device = torch.device("cpu")
        output_space = REGISTRY.lookup_output_space(args.agent,
                                                    env_mgr.action_space)
        if args.custom_network:
            net_cls = REGISTRY.lookup_network(args.custom_network)
        else:
            net_cls = ModularNetwork
        net = net_cls.from_args(
            args,
            env_mgr.gpu_preprocessor.observation_space,
            output_space,
            env_mgr.gpu_preprocessor,
            REGISTRY,
        )
        logger.info("Network parameters: " + str(self.count_parameters(net)))

        def optim_fn(x):
            if args.optim == "RMSprop":
                return torch.optim.RMSprop(x, lr=args.lr, eps=1e-5, alpha=0.99)
            elif args.optim == "Adam":
                return torch.optim.Adam(x, lr=args.lr, eps=1e-5)

        def warmup_schedule(back_step):
            return back_step / args.warmup if back_step < args.warmup else 1.0

        # AGENT
        rwd_norm = REGISTRY.lookup_reward_normalizer(
            args.rwd_norm).from_args(args)
        agent_cls = REGISTRY.lookup_agent(args.agent)
        builder = agent_cls.exp_spec_builder(
            env_mgr.observation_space,
            env_mgr.action_space,
            net.internal_space(),
            env_mgr.nb_env,
        )
        agent = agent_cls.from_args(args, rwd_norm, env_mgr.action_space,
                                    builder)

        self.agent = agent.to(device)
        self.nb_step = args.nb_step
        self.env_mgr = env_mgr
        self.nb_env = args.nb_env
        self.network = net.to(device)
        self.optimizer = optim_fn(self.network.parameters())
        self.scheduler = LambdaLR(self.optimizer, warmup_schedule)
        self.device = device
        self.initial_step_count = initial_step_count
        self.log_id_dir = log_id_dir
        self.epoch_len = args.epoch_len
        self.summary_freq = args.summary_freq
        self.logger = logger
        self.summary_writer = SummaryWriter(log_id_dir)
        self.saver = SimpleModelSaver(log_id_dir)
        self.updater = LocalUpdater(self.optimizer, self.network,
                                    args.grad_norm_clip)

        if args.load_network:
            self.network = self.load_network(self.network, args.load_network)
            logger.info("Reloaded network from {}".format(args.load_network))
        if args.load_optim:
            self.optimizer = self.load_optim(self.optimizer, args.load_optim)
            logger.info("Reloaded optimizer from {}".format(args.load_optim))

        self.network.train()