Beispiel #1
0
def model(cfg, data, label):
    w = gen_symbols(IsingPoly, cfg.dataset.features, cfg.model.length_weight)
    f = forward(data, label, w, cfg)

    q_result = decode_solution(w, solve_model(f))
    q_result = np.vectorize(is_int)(q_result)
    return q_result
Beispiel #2
0
def by_amplify(qubits, model, token, timeout=5000):
    client = FixstarsClient()
    client.token = token
    client.parameters.timeout = timeout
    solver = Solver(client)
    solver.filter_solution = False
    result = solver.solve(model)
    values = result[0].values
    q_values = decode_solution(qubits, values, 1)
    return np.where(np.array(q_values) == 1)[1]
Beispiel #3
0
    def solve(self):
        q = gen_symbols(BinaryPoly, *self.board.get_size(), len(self.pieces),
                        8)

        # 制約(a) 重複する置き方のピースは除外する
        for y in range(self.board.get_size()[0]):
            for x in range(self.board.get_size()[1]):
                for i in range(len(self.pieces)):
                    for j in range(self.pieces[i].placement_count, 8):
                        q[y][x][i][j] = BinaryPoly(0)

        # 制約(b) ピースはボードから外に出ない
        for y in range(self.board.get_size()[0]):
            for x in range(self.board.get_size()[1]):
                for i in range(len(self.pieces)):
                    for j in range(self.pieces[i].placement_count):
                        if len(self.pieces[i].get_blocks(j, (x, y)) -
                               self.board.get_blocks()) > 0:
                            q[y][x][i][j] = BinaryPoly(0)

        # 制約(c) ピース同士は重ならずボードを全て埋める
        s = dict()
        for b in self.board.get_blocks():
            s[b] = BinaryPoly()
        for y in range(self.board.get_size()[0]):
            for x in range(self.board.get_size()[1]):
                for i in range(len(self.pieces)):
                    for j in range(self.pieces[i].placement_count):
                        for p in self.pieces[i].get_blocks(
                                j, (x, y)) & self.board.get_blocks():
                            s[p] += q[y][x][i][j]
        board_constraints = [equal_to(q, 1) for q in s.values()]

        # 制約(d) 全てのピースは一度ずつ使われる
        piece_constraints = [
            equal_to(
                sum(q[y][x][i][j] for y in range(self.board.get_size()[0])
                    for x in range(self.board.get_size()[1])
                    for j in range(8)), 1) for i in range(len(self.pieces))
        ]

        constraints = (sum(board_constraints) + sum(piece_constraints))

        solver = Solver(self.client)

        model = BinaryQuadraticModel(constraints)
        result = solver.solve(model)
        if len(result) == 0:
            raise RuntimeError("Any one of constaraints is not satisfied.")

        solution = result[0]
        values = solution.values
        q_values = decode_solution(q, values)
        Visualizer().visualize(self.pieces, self.board, q_values)
Beispiel #4
0
    def solve(self,
              c_weight: float = 3,
              timeout: int = 1000,
              num_unit_step: int = 10) -> Setlist:
        """

        Args:
            c_weight (float): 時間制約の強さ
            timeout (int, optional): Fixstars AE のタイムアウト[ms] (デフォルト: 10000)
            num_unit_step (int, optional): Fixstars AE のステップ数 (デフォルト: 10)

        Returns:
            Setlist: セットリスト
        """
        self.q = gen_symbols(BinaryPoly, self.num_tracks)
        energy_function = self.energy(c_weight)
        model = BinaryQuadraticModel(energy_function)

        fixstars_client = FixstarsClient()
        fixstars_client.token = os.environ.get("FIXSTARS_API_TOKEN")
        fixstars_client.parameters.timeout = timeout
        fixstars_client.parameters.num_unit_steps = num_unit_step

        amplify_solver = Solver(fixstars_client)
        amplify_solver.filter_solution = False
        result = amplify_solver.solve(model)

        q_values = decode_solution(self.q, result[0].values)
        tracks = [self.candidates[i] for i, v in enumerate(q_values) if v == 1]

        total_time = 0
        user_scores = np.zeros(self.num_users)
        for track in tracks:
            user_scores += np.array(track.p)
            total_time += track.duration_ms

        return Setlist(tracks=tracks,
                       scores=user_scores.tolist(),
                       score_sum=user_scores.sum(),
                       score_avg=user_scores.mean(),
                       score_var=user_scores.var(),
                       total_time=total_time)
Beispiel #5
0
# ソルバーの構築
solver = Solver(client)

# 問題を入力してマシンを実行
result = solver.solve(f)

# 解が得られなかった場合、len(result) == 0
if len(result) == 0:
    raise RuntimeError("No solution was found")

print("Number of results = ",len(result))

energy = result[0].energy
values = result[0].values

partitions = set()

for sol in result:
    solution = decode_solution(s, sol.values)
    
    A0 = tuple(sorted([A[idx] for idx, val in enumerate(solution) if val != 1]))
    A1 = tuple(sorted([A[idx] for idx, val in enumerate(solution) if val == 1]))

    # 同じ分割がすでにリストに含まれていない場合
    if (A1, A0) not in partitions:
        partitions.add((A0, A1))

for p in partitions:
    print(f"sum = {sum(p[0])}, {sum(p[1])}, partition: {p}")
Beispiel #6
0
    equal_to(sum_poly([q[i][c] for c in range(num_colors)]), 1)
    for i in range(num_region)
]

# 隣接する領域間の制約
adj_constraints = [
    # 都道府県コードと配列インデックスは1ずれてるので注意
    penalty(q[i][c] * q[j - 1][c]) for i in range(num_region)
    for j in jm.adjacent(i + 1)  # j: 隣接している都道府県コード
    if i + 1 < j for c in range(num_colors)
]

constraints = sum(reg_constraints) + sum(adj_constraints)

model = BinaryQuadraticModel(constraints)
result = solver.solve(model)
if len(result) == 0:
    raise RuntimeError("Any one of constraints is not satisfied.")

values = result[0].values
q_values = decode_solution(q, values, 1)

color_indices = np.where(np.array(q_values) == 1)[1]
color_map = {
    jm.pref_names[i + 1]: colors[color_indices[i]]
    for i in range(len(color_indices))
}

plt.rcParams["figure.figsize"] = 6, 6
plt.imshow(jm.picture(color_map))
plt.show()
Beispiel #7
0
def quantum_solver_approx(N, M,
                          query):  # solve with Amplify (approximate version)
    q = gen_symbols(BinaryPoly, M, N, N)  # represent the solution

    ##########   constraints   ##########

    # each layer doesn't have 2+ same values
    one_hot_constraints_layer = [
        # m -> layer
        # n -> qubit
        # v -> value of qubit
        equal_to(sum(q[m][n][v] for n in range(N)), 1) for m in range(M)
        for v in range(N)
    ]

    # each qubit doesn't have 2+ values
    one_hot_constraints_num = [
        # m -> layer
        # n -> qubit
        # v -> value of qubit
        equal_to(sum(q[m][n][v] for v in range(N)), 1) for m in range(M)
        for n in range(N)
    ]

    # every CX gate must be applied for 2 adjacent qubits
    CXgate_constraints = []
    for m in range(M):
        for g0 in range(0, len(query[m]), 2):
            v0, v1 = query[m][g0], query[m][g0 + 1]

            # v0 and v1 must be adjacent each other
            for i in range(N):
                for j in range(i + 2, N):
                    CXgate_constraints.append(
                        penalty(q[m][i][v0] * q[m][j][v1]))
                    CXgate_constraints.append(
                        penalty(q[m][i][v1] * q[m][j][v0]))

    constraints = (sum(one_hot_constraints_layer) +
                   sum(one_hot_constraints_num) + sum(CXgate_constraints))

    cost = sum_poly(
        M - 1, lambda m: sum_poly(
            N, lambda i: sum_poly(
                N, lambda j: sum_poly(N, lambda v: q[m][i][v] * q[m + 1][j][v])
                * ((N - 1) * (i + j) - 2 * i * j) / N)))

    ##########   solve   ##########

    solver = Solver(client)
    model = BinaryQuadraticModel(constraints * constraintWeight + cost)

    result = solver.solve(model)
    if len(result) == 0:
        raise RuntimeError("Any one of constraints is not satisfied.")

    values = result[0].values
    q_values = decode_solution(q, values, 1)

    # print(q_values_main)

    ##########   decode the result into string   ##########

    ans = [[-1 for n in range(N)] for m in range(M)]
    for m in range(M):
        for n in range(N):
            for v in range(N):
                if (q_values[m][n][v] > 0.5):
                    ans[m][n] = v

    cost = 0
    for m in range(M - 1):
        cost += calcCost(ans[m], ans[m + 1])

    return cost, ans
Beispiel #8
0
def quantum_solver_strict(N, M, query):  # solve by Amplify (strict version)
    q_all = gen_symbols(BinaryPoly,
                        M * N * N + (M - 1) * N * N * N + (M - 1) * N * N)

    q = q_all[:M * N * N]  # represent the solution
    q_sub = q_all[M * N * N:M * N * N + (M - 1) * N * N *
                  N]  # q_sub[m][i][j][v] = q[m][i][v] * q[m+1][j][v]
    q_C_matrix = q_all[
        M * N * N + (M - 1) * N * N *
        N:]  # q_C_matrix[m][i][j] = sum(q_sub[m][i][j][v] for v)

    ##########   constraints   ##########

    # each layer doesn't have 2+ same values
    one_hot_constraints_layer = [
        # m -> layer
        # n -> physical qubit
        # v -> logical qubit
        equal_to(sum(q[(m * N + n) * N + v] for n in range(N)), 1)
        for m in range(M) for v in range(N)
    ]

    # each qubit doesn't have 2+ values
    one_hot_constraints_num = [
        # m -> layer
        # n -> physical qubit
        # v -> logical qubit
        equal_to(sum(q[(m * N + n) * N + v] for v in range(N)), 1)
        for m in range(M) for n in range(N)
    ]

    # every CX gate must be applied for 2 adjacent qubits
    CXgate_constraints = []
    for m in range(M):
        for g0 in range(0, len(query[m]), 2):
            v0, v1 = query[m][g0], query[m][g0 + 1]

            # v0 and v1 must be adjacent each other
            for i in range(N):
                for j in range(i + 2, N):
                    CXgate_constraints.append(
                        penalty(q[(m * N + i) * N + v0] *
                                q[(m * N + j) * N + v1]))
                    CXgate_constraints.append(
                        penalty(q[(m * N + i) * N + v1] *
                                q[(m * N + j) * N + v0]))

    # q_sub[m][i][j][v] = q[m][i][v] * q[m+1][j][v]
    sub_gate_constraints = []
    for _idx in range((M - 1) * N**3):
        idx = _idx
        m = idx // (N**3)
        idx %= N**3
        i = idx // (N**2)
        idx %= N**2
        j = idx // N
        idx %= N
        v = idx

        sub_gate_constraints.append(
            penalty(3 * q_sub[((m * N + i) * N + j) * N + v] +
                    q[(m * N + i) * N + v] * q[((m + 1) * N + j) * N + v] -
                    2 * q_sub[((m * N + i) * N + j) * N + v] *
                    (q[(m * N + i) * N + v] + q[((m + 1) * N + j) * N + v])))

    # q_C_matrix[m][i][j] = sum(q_sub[m][i][j][v] for v)
    C_matrix_sum_constraints = []
    for _idx in range((M - 1) * N**2):
        idx = _idx
        m = idx // (N**2)
        idx %= N**2
        i = idx // N
        idx %= N
        j = idx

        C_matrix_sum_constraints.append(
            equal_to(
                q_C_matrix[(m * N + i) * N + j] -
                sum(q_sub[((m * N + i) * N + j) * N + v] for v in range(N)),
                0))

    constraints = (sum(one_hot_constraints_layer) +
                   sum(one_hot_constraints_num) + sum(CXgate_constraints) +
                   sum(sub_gate_constraints) + sum(C_matrix_sum_constraints))

    cost = []
    for m in range(M - 1):
        for i1 in range(N):
            for j1 in range(i1):  # i1 > j1
                for i2 in range(N):
                    for j2 in range(i2 + 1, N):  # i2 < j2
                        cost.append(q_C_matrix[(m * N + i1) * N + j1] *
                                    q_C_matrix[(m * N + i2) * N + j2])

            for j1 in range(i1 + 1, N):  # i1 < j1
                for i2 in range(N):
                    for j2 in range(i2):  # i2 > j2
                        cost.append(q_C_matrix[(m * N + i1) * N + j1] *
                                    q_C_matrix[(m * N + i2) * N + j2])

    # print(constraints)
    # print(cost)

    ##########   solve   ##########

    solver = Solver(client)
    model = BinaryQuadraticModel(constraints * constraintWeight + sum(cost))

    result = solver.solve(model)
    if len(result) == 0:
        raise RuntimeError("Any one of constraints is not satisfied.")

    values = result[0].values
    q_values = decode_solution(q_all, values, 1)

    # print(q_values_main)

    ##########   decode the result into string   ##########

    ans = [[-1 for n in range(N)] for m in range(M)]
    for m in range(M):
        for n in range(N):
            for v in range(N):
                if (q_values[(m * N + n) * N + v] > 0.5):
                    ans[m][n] = v

    cost = 0
    for m in range(M - 1):
        cost += calcCost(ans[m], ans[m + 1])

    return cost, ans
Beispiel #9
0
def visualize_solution(x, values):
    # execute decoding
    x_sol = decode_solution(x, values, 1)
    print(x_sol)
    def find_feasible_solution(self):
        """find a feasible locations with makespan, found -> set self.used_edges
        """
        # create variables
        q = []
        index = 0
        for t in range(self.makespan):
            q.append([])
            for v in range(self.field["size"]):
                l = len(self.field["adj"][v])+1  # +1 -> stay at the current location
                q[-1].append(
                    amplify.gen_symbols( amplify.BinaryPoly, index, (1, l) )
                )
                index += l

        # set starts
        constraints_starts = [
            equal_to(sum_poly( q[0][v][0] ), 1)    # q[timestep][node][0]
            for v in self.instance["starts"]
        ]

        for v in range(self.field["size"]):
            if v in self.instance["starts"]:
                continue
            # other locations
            for i in range(len(q[0][v][0])):
                q[0][v][0][i] = amplify.BinaryPoly(0)

        # set goals
        constraints_goals = [
            equal_to(sum_poly([ q[-1][u][0][ self.field["adj"][u].index(v) ]
                                for u in self.field["adj"][v] ] +
                              [ q[-1][v][0][ len(self.field["adj"][v]) ] ]),
                     1)
            for v in self.instance["goals"]
        ]

        for v in range(self.field["size"]):
            # other locations
            for i in range(len(self.field["adj"][v])):
                if self.field["adj"][v][i] not in self.instance["goals"]:
                    q[-1][v][0][i] = amplify.BinaryPoly(0)
            if v not in self.instance["goals"]:
                q[-1][v][0][-1] = amplify.BinaryPoly(0)

        # upper bound, in
        constraints_in = [
            less_equal(sum_poly([ q[t][u][0][ self.field["adj"][u].index(v) ]
                                  for u in self.field["adj"][v] ] +
                                [ q[t][v][0][ len(self.field["adj"][v]) ] ]),
                       1)
            for v, t in product(range(self.field["size"]), range(0, self.makespan-1))
        ]

        # upper bound, out
        constraints_out = [
            less_equal(sum_poly( q[t][v][0] ),
                       1)
            for v, t in product(range(self.field["size"]), range(1, self.makespan))
        ]

        # continuity
        constraints_continuity = [
            equal_to(sum_poly([ q[t][u][0][ self.field["adj"][u].index(v) ]
                                for u in self.field["adj"][v] ] +
                              [ q[t][v][0][ len(self.field["adj"][v]) ] ])
                     -
                     sum_poly( q[t+1][v][0] ),
                     0)
            for v, t in product(range(self.field["size"]), range(0, self.makespan-1))
        ]

        # branching
        for v in range(self.field["size"]):
            if not self.field["body"][v]:
                continue
            # unreachable vertexes from starts
            for t in range(0, min(self.DIST_TABLE_FROM_STARTS[v], self.makespan)):
                for i in range(len(q[t][v][0])):
                    q[t][v][0][i] = amplify.BinaryPoly(0)
            # unreachable vertexes to goals
            for t in range(max(self.makespan - self.DIST_TABLE_FROM_GOALS[v] + 1, 0), self.makespan):
                for i in range(len(q[t][v][0])):
                    q[t][v][0][i] = amplify.BinaryPoly(0)

        # set occupied vertex
        for v in range(self.field["size"]):
            if self.field["body"][v]:
                continue
            for t in range(0, self.makespan):
                q[t][v][0][-1] = amplify.BinaryPoly(0)

        # create model
        model = sum(constraints_starts)
        model += sum(constraints_goals)
        if len(constraints_in) > 0:
            model += sum(constraints_in)
        if len(constraints_out) > 0:
            model += sum(constraints_out)
        if len(constraints_continuity) > 0:
            model += sum(constraints_continuity)

        # setup client
        client = FixstarsClient()
        client.token = os.environ['TOKEN']
        client.parameters.timeout = self.timeout

        # solve
        solver = amplify.Solver(client)
        result = solver.solve(model)
        if len(result) > 0:
            self.used_edges = amplify.decode_solution(q, result[0].values)
Beispiel #11
0
client = FixstarsClient()
client.parameters.timeout = 1000  # タイムアウト1秒
# client.token = "xxxxxxxxxxxxxxxxxxxxxxxxxx" # アカウントトークンに置換
client.parameters.outputs.duplicate = False  # 同じエネルギー値の解を列挙しない

solver = Solver(client)
result = solver.solve(f)

# 解が得られなかった場合、len(result) == 0
if len(result) == 0:
    raise RuntimeError("No solution was found")

energy = result[0].energy
values = result[0].values

solution = decode_solution(q, values)

# 注文する料理リスト
ORDER_GRAND_MENUS = []

# 注文する料理の価格合計
SUM_ORDER_GRAND_MENU_PRICES = 0

# 注文する料理のカロリー合計
SUM_ORDER_GRAND_MENU_CALORIES = 0

for i in range(len(solution)):
    if solution[i] == 1:
        ORDER_GRAND_MENUS.append(GRAND_MENU[i])
        SUM_ORDER_GRAND_MENU_PRICES += GRAND_MENU[i]["price"]
        SUM_ORDER_GRAND_MENU_CALORIES += GRAND_MENU[i]["calorie"]
Beispiel #12
0
#!/usr/bin/env python3

from amplify import decode_solution

import make_hamiltonian as mh
import make_instance as mi
import solve_problem as sp
import visualize_solution as vs

if __name__ == '__main__':
    # get instance information
    type_matrix, weak_matrix, resist_matrix, enemies, num_party, feed_dict = mi.make_instance(
    )
    # set hamiltonian for model
    x, model = mh.make_hamiltonian(type_matrix=type_matrix,
                                   weak_matrix=weak_matrix,
                                   resist_matrix=resist_matrix,
                                   enemies=enemies,
                                   num_party=num_party,
                                   feed_dict=feed_dict)
    # solve with amplify
    obj, values, broken = sp.solve_problem(model=model)
    # execute decoding
    x_sol = decode_solution(x, values)
    # visualize solution
    print('***** Enemies *****')
    vs.visualize_solution(sol=enemies)
    print('***** My party *****')
    vs.visualize_solution(sol=x_sol)